EZ-USB Technical Reference M anual
Version 1.51

q P Anchor ChipsIncorporated

U 12396 World Trade Drive
M/S 212

San Diego, CA 92128
ANCHORCHIPS (619) 613-7900 Fax (619) 676-6896

The information in this document is subject to change without notice and should not be
construed as a commitment by Anchor Chips Incorporated. While reasonable precautions
have been taken, Anchor Chips Incorporated assumes no responsibility for any errors that
may appear in this document.

No part of this document may be copied or reproduced in any form or by any means
without the prior written consent of Anchor Chips Incorporated.

Anchor Chips products are not designed, intended, or authorized for use as components
in systems intended for surgical implant into the body, or other applications intended to
support or sustain life, or for any other application in which the failure of the Anchor
Chips product could create a situation where personal injury or death may occur. Should
Buyer purchase or use Anchor Chips products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Anchor Chips and its officers, employees,
subsidiaries, affiliates and distributors harmless against all claims, costs, damages,
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if
such claim alleges that Anchor Chips was negligent regarding the design or manufacture
of the part.

The acceptance of this document will be construed as an acceptance of the foregoing
conditions.

"Appendices A, B, and C of this databook™" contain copyrighted material that is the
property of Synopsys, Inc., (C) 1998, ALL RIGHTS RESERVED.

The EZ-USB Technical Reference Manual

Version 1.51

Copyright 1998, Anchor Chips Incorporated
All rights reserved.

EZ-USB TRM YV 1.51

1

4

Table of Contents

INTRODUCING EZ-USB.... .o sssanas 1
I R 1 N =70 16 o 1 L] TR 1
1.2 EZ-USB BLOCK DIAGRAMS ...cttttiiiiiiiitttie e e e s ettt s e e e s s e aa bt s e e s s e eab b s s esasees bbbt s eesssessbbaasaeaases 2
1.3 THEUSB SPECIFICATION ...iiiiittuuiiiieiiiettttiisessseessssasseesssesssasasseessessssasssessseessssaseesssesssssansseesses 3
1.4 TOKENSAND PIDS ...t e e s e et s e e s s e e s bbb s e e s s s eesbba e eaaees 3
R T (01 I EST Y X 1 = = TSR 5

151 Receiving data fromthe NOSE........ooouiiiiiie e 5

152 Sending datato the hOSE.........oo i 5
U 3 B 1= =0 o) T TR 6
A = 7Y Y 1 =TT 6
1.8 USB TRANSFER TYPES.. i iiiiittttiiiiieiiietttie s e e s s e eet b s e e e s s e aa bt e e e s seea bbb s eessees bbb s eessseesbbaanaeaases 6

RS20 R U S =01 = 6

1.8.2 INLEITUPE TrANSIEI'S ...ttt ettt ettt et e bt e sbe e sate e smbe e e be e e sbeeesaneas 7

1.8.3 1SOCHIONOUS TraNSIErS s 7

RS2 S o g 11 o I =101 (= = 8
S I N[O Y = 27Ny T TR 8
1.10 THE ANCHOR CORE .vvuuiiiiiiiieiiiii i e e e s sttt s s s e s s eebab s s e e st eeab b s e e st ee s bbb seessees bbb s e eessensbbaanses 10
1.11 EZ-USB MICROPROCESSOR ... iiiitttttiiieestiestsssseesssesssssssessseesssieesssesssseesssesseain 11
1.12 RENUMERATION T it e e e st e bt e e e e s e ea b b s e e s s e es bbb s eesssesbbbasaeaaaes 12
1.13 EZ-USB ENDPOINTS. . .ciiitttttiiiiiiiiiietiis it e e s s e eet et s e e s s s eea bt e e eeseesbb b s eessessbbba s eesssessbbaaseeaases 12

1131 EZ-USB BUIK ENAPOINES.eiiiiiiiiii ettt ettt st sae st e b e 12

1.13.2 EZ-USB Control ENAPOINE ZEMOeieiiieieieeiiee ettt ettt st s b 12

1.13.3 EZ-USB INterrupt ENAPOINES.coiiiiiiiieiiee ettt 13

1.13.4 EZ-USB IS0chronous ENAPOINES.coieiiiiieiiieiiie ettt 13
1.14 FAST TRANSFER IMODES.uuuuiiiiiiiiietiiiii e e e s eeet s s s e s s s eea bt s e e e s e eabb s seessess bbb s e esssesbbbaaseeaanes 14
1.15 TN T2 {0 =2 TR 14
1.16 RESET AND POWER MANAGEMENT ..ttttuitieeiiiettiiseeessseesbbasssessesssssasssessssssssansssesssesssssnseeeases 15
1.17 EZ-USB PRODUGCT FAMILY 1ttt ettt e et s s e s s e eab b s s e e s s s esbbbas s e e s ssenbbbaa e eaaees 15
1.18 PIN DESCRIPTION t1tuutiiiiiietttts s e e eeseesttas s s eesseessba s eessseas s bt seeesees bbb seesseessbbaasseesssessbbannsseaares 16

A = T 0 = 25
2 R | N1 =10 01U [0 o) TR 25
2.2 BOB5L ENHANCEMENTS ... ciitittttiiieieeitttts et s e e s seest bt eesssee s bbbt seesssessbaa s eeasseessbbaseesssessbbaassaeaanes 25
2.3 EZ-USB ENHANCEMENTS .cttttttiiiiiiittttitiiieesseestsssseessssestsaasssesssesssaaastesssesssssssseesserssrsanssessses 25
2.4 EZ-USB REGISTER INTERFACEiittttttiiiiiee ittt s e e e e s eesba s s e s s s sasbb s e essseesbbb s eesssessbbaseeaaaes 26
2.5 EZ-USB INTERNAL RAM ..ottt e e et e e e s s e e a bbb e e e s s s e sab b e eaaees 26
S T L O N = o= S TR 27
A N LN B 1 = = LU = S TR 27
2.8 POWER CONTROL ettttuuiiiiiitttttiiieeesttessssaseesseessssseessseestsssstesssessssstessseesssteesrerseasin 28
DS T 29
2.10 INTERNAL BUS .. iiiitttiiiiiiee e ittt s e e e s e eetb s e e e s s ee s b b s e e ees s e s bbb s e eas s e s bbb e eessess bbb e eesseenbbbaanses 30
211 [I 31

L B Y 1Y/ 1 32
G 20 R | N1 =00 01U T o) TR 32
I 05 1Y, 1 = Y) = 2T 32
3.3 EXPANDING EZ-USB MEMORYcoiiiiiiiiiiiiiiiietties ettt s e s s et s e s s s e e a bbb s e e s s s esabbaaeeaaees 35
3.4 CSH AND OFH SIGNALS....ciitttiiii i ettt e e e s et e e e s s e e s b e e e st s ea bbb s e esssees bbbt seesssessbbaseeasaes 36
3.5 EZ-USB ROM VERSIONS.....utuuiiiiiiiiittitiiiiieesiistiisssessssestssssessssessssssessseesssseessressrneasae 38

EZ-USB INPUT/OUT PUT ...ttt 40

EZ-USB TRM YV 1.51

S T 1 N =00 0 10 Lo [TN 40

S L@ N = o= S TN 40
4.3 O PORT REGISTERScctttttiiiiiiiiitttiiiiieeesstestb et seessssasb st e eassees s bt seessees bbbt eessseesbbaasseesssenssses 43
A 120 CONTROLLER .e.vreeeeeeeeeeeseeeeeeeee et eeeeeeeeeeeee s e e eeeeeeee e e s eeeeeeee e e eeeeeeeeeeeeeeeeeeeeeeee e eseeeeeenenneneeeen 44
4.5 8051 12C CONTROLLER:ecteteueeeeeseeeeeeseeeeeesesssesetetetetesessesesesessseeeesesesesesesesesesessseseseteseneeesesesesaes 44
I O N 1 210 T = T ST 46
T A 7Y = [P RRPRRRRRRRRTTTR 46
8.2 STOP....eiiiiieeieeeeeeeeeeeeeeaaateestasasasssaes s s s e s sesess e s e s s ee e st e et s sttt st e ettt ettt ettt et s e s et st s nnenennnnnenenrnnrnrnnnnnns 46
8.3 LASTRDceeiieieieieeeeeeeeeeteessesessssssssssssssssssssssssasssssssssessss s s s s s s s s s s e s s s s s s s s s ssssesnsennnsenenrnnrnrnnnnnns 46
Y VN LU 1S = T KT 47
471 DONEooiieiieeeeieiieeeeeeeeeteessesesssssassnnnns 47
o R - O (O RSPRRRRRRRRRTTR 47
R T = = R SPRRRTRRRRRTTR 47
S 1 0 X I 1 5 L0 R SPRTRTRRRTRRRR 47
4.8 SENDING IZC DATA oot ee e et et e e et ee e e e e e et ee e e e e et eeee et e e e et eeeeeeeeneneneeeen 48
4.9 RECEIVING IZC DATA oot e et et e et ee e e e e e et e e e e et eeeeeeeeeee e eeeeeeeenen e e eeeen 48
4,10 12C BOOT LOADER.....eceiteteeeeeeeeseeeeeeeeeeeeteeetetet et et eteseseseeseseeeseseeseeeseseseseseseeeseses et et et et eeesesesesas 49
5 EZ-USB ENUMERATION AND RENUMERATIONT™ L e 51
LT R | N1 =00 01U [0 o) TR 51
5.2 THE DEFAULT ANCHOR DEVICE.......iittttiiiii ittt ettt s e e s eab s e s s s e e s bbb s e e s s s e sbbba e eaaees 52
5.3 EZ-USB CORE RESPONSE TO EPO DEVICE REQUESTSccvtviiiiiiiiiietiiie e eeevtiis e eevbi e 53
X Y Nl S o] = I)Y o TR 54
5.5 ENUMERATION IMODES......ccttttiiiiiiiiiiiiiiiii e e e ettt e e e s s e et s s e e e s e eaa b s e e e s see s bbb seesssessbbaseeaaaes 56
5.6 NOSERIAL EEPROM ...t e s et e e s s e e r bbb e e s s s e s e b e e aaees 58
5.7 SERIAL EEPROM PRESENT, FIRST BYTEISOXBO......ciiiiiiiiiieic ettt esv e 59
5.8 SERIAL EEPROM PRESENT, FIRST BYTEISOXB2..... oottt 60
.0 RENUMERATION M it e e e e s e e e bt e e e s e e e bbb s eeessee b bbb s eesseess bbb reeaaaes 62
5.10 MULTIPLE RENUMERATIONS ™ Lttt ettt s s e et s e e s s e e e bbb s e e s s s e ebbba e eaanes 63
511 DEFAULT DESCRIPTORctttttiiiiiiiittttiiieessstsstiiseesssesstssasessseessssssseessersssseesssessssnaeesnes 63
6 EZ-USB BULK TRANSFERS ...t 73
(ST R | N1 =00 01U [0 o) TR 73
6.2 BULK IN TRANSFERS.ciittttttiiiiieiittttiiiiiseesseests s e eaaseesta s eessteassaassessseessbaasseesssessrbsasseeasaes 76
6.3 INTERRUPT TRANSFERScetttttuiiiieiiiittttiiieesseestsssseessstestssaseesstesssasstessseessssaseessressssassseesses 77
6.4 EZ-USB BULK IN EXAMPLE .uuuuiiiiiiiiiiiiiii e eee ettt s e e s s et b s s s e s s s eatbbasssessseesbbbasseesssessbbanseeasaes 78
6.5 BULK OUT TRANSEERS.ccttttiiiiieiitttttiiiieesttesttseessteestieestterst ettt 79
(S S = T o] = o N N1 2T L 7T 81
6.7 PAIRED IN ENDPOINT STATUS ..uuiiiiiiiiiiiiiii ettt e e s s s et s e e s s s e et ba s s e s s s e esbb b s eesssessbbaseeaaees 81
6.8 PAIRED OUT ENDPOINT STATUS. .. ciiiiittiiiiiiiiiiittiiiisieeesssestba st eessseassasseessseesssasssesssessrsnssseasaes 82
6.9 USING BULK BUFFER MEMORYiiiiiiiiiiiiiiiieeetie s e e e e s ettt s s e s s s eatba s e e s s s e esabb s e e s s sesabbaaseeaaees 82
6.10 DATA TOGGLE CONTROL ..tttuuiiiiiiittitiiiieesseistsisseesssesssssasessstesssseessessssseeessessseeane 83
6.11 POLLED BULK TRANSFER EXAMPLE ..vvuiiiiiiiietiiii ettt e e e s e eabb s s e s s s eaabb s s e s s s sssbba e eaaees 84
6.12 ENUMERATION NOTE ...ttt ee s e s e st et s s e e e s e e bbb s s e e s s e e e bbb s e eessesbbbaa e eaanes 85
6.13 BULK ENDPOINT INTERRUPTS.cittttttiiiiieiiiettiiiseessseesbba s essssssssaan s eessessssaanssesssessssnnsesaases 86
6.14 INTERRUPT BULK TRANSFER EXAMPLE. . .uuiiiiiiiiiiiiie e eeettis e e e s e et e s s s eeabba s e e s s s esabbaan s 88
6.15 ENUMERATION NOTE ...ttt ettt e e e e e e et s e e e s e e et b s e e s s e e e bbb s e e e seesbbba e eaanes 91
6.16 THE AUTOPOINTER .ettttuiiieiiitettttsieesssesstssaiessssessssssssesssessssssssteesseestssseessersssseesssessssns 92
7 EZ-USB ENDPOINT ZEROottt s 95
% R | N1 1270 01U Lo o) TR 95
7.2 CONTROL ENDPOINT EPO ..ottt ettt e e et e e e s s e e s bbb s e e s s s e sbbba e eaaees 96
7.3 USB REQUESTS....cutttiiiiiiiiiiiitee ettt e et e s e e e e s e e s b e e e s s s ea bbb s e eessee s bbb s eesssesa bbb seeaaaes 99
T.3L GEEALUS......cccceeeeeeeeeeeeeee e 102
T7.3.2 SEFEAIUIE....c.ccceeeeeeeeeeeeeee 106
7.3.3 Clear FEAUIE......ccooeeeeeeeeeeeeeeeeeee 108

EZ-USB TRM YV 1.51

TSR R €T D= o] o o RSP OTRT 109

TSRS = B L= ol g] o] (o] S TSRS 112
7.3.6 St CONfIQUIALIONeiitiiiiiie ittt et e bt sae e e sabe e s be e e nbe e e nnneas 114
ST A €= oo] =11 oo FO TSP OTR 114
7.3.8 S INEITACE ... 115
7.3.9 GELINEITACE ..o 116
7310 SELAAUrESS.....cceeeeeeeeeeeee 116
S T N R o =0 = T RSP OTRT 117
7.3.12 ANCROr LOA........co o 118

8 EZ-USB ISOCHRONOUS TRANSFERS 119
20 N 1N =00 01U [0 @) N TR 119
8.2 ISOCHRONOUS IN TRANSFERS......cciiittttttiiiiieeiiettiis i teesseestb s e e s st essbb s teesssessbaa s eeassessbbaseeaaaes 120
8.2.1 INUAlIZALION......cco oo 120
8.2.2 INDAATIANSIErS.....cccoeeeeeeeeeeeeeeee e 121
8.3 ISOCHRONOUS OUT TRANSFERS.cctttttiiiiiiiiiitttiiiiieesirestrieesssesstseasstestrsessressrieaane 122
8.3.1 INUAlIZALION......cc oo 122
8.3.2 OUT DAA TrANSIEccoeeeeeeeeeeeeeeeee e 122
8.4 SETTING ISOCHRONOUS FIFO SIZES.....iuiiiiiiiiiiitiii ettt er e e e e r e e e 123
8.5 |SOCHRONOUS TRANSFER SPEED.......cetttuiiiieiiiettiiiiieesiiestssieesssesstssessssesssieessressieaane 125
S o N B I 2T N NS = = = S TR 126
B.6.1 FAStWWIILES oo 127
8.6.2 FASIREAUS......co oo 127
8.7 FAST TRANSFER TIMING ...ccttttuiiiiiiiiitttiisieeesseestbis s s eesseesaba s eeassessbbaa s sessseesbbaaa s eesssensbbaaseeaanes 129
8.7.1 Fast WHteWAVEfOIMIS ... 130
8.7.2 Fast Read WaVEfOIMS........cooeeeeeeeeeeeeeeeeeeeeeeee 131
8.8 FAST TRANSFER SPEED......cctttuuiiiiieiiitttttiieessiiesttsteesseesssseessteestsstessstestreessressrinneeasne 132
8.9 OTHER |SOCHRONOUS REGISTERS.....cctttuiiiiiiiiiittiiiiiieesieestsiieesssesstsasessssesssseessressseaane 133
8.9.1 DISADIEISD ... 133
8.9.2 ZErOBytE COUNE BItS.....cciiuiiiiiiieiiiiiiee ettt ettt st sae e et e st e sbe e snne s 134
8.10 ISO [N RESPONSE WITH NO DATAciitttttiiiieeiiiettiiisieessssssssaseeessessssaeeessesssssseesssesssssnnsns 134
9 EZ-USB INT ERRUP T S ... et aas 135
L TR R | N1 =00 01U [0 o) TR 135
0.2 USB CORE INTERRUPTS ...cctttttiiiiieiittttiisie e s st eesbbs s s e essessabb s sesssessbbaa s sessssessbaaa s eesssessbbaaseeaanes 136
0.3 WAKEUP INTERRUPT ...tiiiiiittitiei e e e ettt s s e e e s eet b b st e e s s e e st b s e e e s s ee s bbb eees s e e s b bbb s eesssensbbaaseeaanes 136
0.4 USB SIGNALING INTERRUPTS ...ttt iiiiitttiieie e e s s eetbbis st e e s s sssaba st e esssessbbaa s seasssessbaaa s sesssessbbaseeaanes 138
0.5 SUTOK , SUDAY INTERRUPTS.....ciittttttiiitieitiittiiiiiieessessssiseessstsstsseeesssessrasessresssieaane 142
L I TS @ ol 1N = 2= (U] =2 ST 142
O.7 SUSPEND INTERRUPTciitttttii i eee ittt s s e e s s ettt s s e e st e e st b b seeassee s bbb s seassees b bbb s eesssessbbaaseeaanes 143
0.8 USB RESET INTERRUPT ...cottttiiiiiiiiietiis it e e s s ettt s s e e s s e ssaba s e e s s s esabba s s easssesbbaaa s eesssensbbaseeaaaes 143
0.9 BULK ENDPOINT INTERRUPTS ...uuiiiiiitttiii e ee s s ettt s s e e s ssesaba s s e s s sesabbaaseeasssesbbaaaseesssessbbaasseeasnes 143
9.10 USB AUTOVECTORSiitttttiiiiieeiiiettiis e eesseesbbas s e eesseesbb s eesseessbba s eeasseasbbaaseesssessbbannsseasans 144
9.11 AUTOVECTOR CODING .. .ciiittttiiiiieeeieettbie s s e e s s s est bt e e s s s e e sbb s e e s s ses s b b s e eessea bbb e eesseessbbansses 144
0.12 120 INTERRUPT et eeeeee et ee et et et ettt ettt et e et et ee et eeeses et esesee et et es et et et et et et et et e e e e e e et eeeeeeenens 146
10 EZ-USB RESET S . 147
10.1 INTRODUGCTION ...oittttttieeeiieettttsseeesseestb s s eesssessba s seessees s b b s esassee s b b s eesseessbbanseesseensbbanssns 147
10.2 EZ-USB POWER-ON-RESET (POR)cciutiiiiiiiiieeitie sttt sttt s b e saee s snne s 147
10.3 RELEASING THE 8051 RESET ciiiiiiiiii ettt ettt e e s s e e et s e e s s s ea bbb s s e s s s eeabba e eaaees 149
10.3.1 RAM DOWNIOAAo e 149
O T2 (1Y I 0 7= o 149
O TS T T (= = | (1Y 149
10.4 O I S oy = = o TN 150
10.5 IS R S TU LSy s o 150
10.6 EZ-USB DISCONNECT ...ccvttttiiiiieiiietttieiieesstestbisssesssesssssssesssesssbaaaseesssesssbsassesssessssansseasses 152

EZ-USB TRM YV 1.51

10.7 RESET SUMMARY .ttt ittt e e e s e ettt s s e e s e et b b s s e e s s e ea bbb s eesssea bbb s eeesseesbbaanaeaases 153

11 EZ-USB POWER MANAGEMENT ... 154
11.1 INTRODUGCTION ...iiitttttieeetieettti s e eesseesta s e eesseessbaa i seesseee s b b s eeasseesbbaa s sessseessbbaseesseensbbanssns 154
11.2 S = = TN 155
11.3 RESUME ..ttt e e e e s e e e b s e e e st e e b bbb e e e e s s ea bbb s e e e sseeabba e eaaaes 156
11.4 REMOTE W AKEUP. ...ttt ettt e e ettt e e e e s et e b b e s e e s s e e e bbb s e e e s s ea bbb s eeessees bbb eeaaaes 157

12 EZ-USB REGISTERS.......co o 159
12.1 INTRODUGCTION ...iittttttiieeeieeettitaseeesseesbb s seesseessba s seessse s s b b seeasseesbbaa s eessseessbbanseesseensbbanssns 159
12.2 BULK DATA BUFFERSccotttiiiiiiiiietiiie ettt s e e s s e ettt s s e s s e eab b b s e s s s seabbba s e essseesbbaaseeeanes 161
12.3 ISOCHRONOUS DATA FIFOS.....ce e ar b 162
12.4 | SOCHRONOUS BY TE COUNTS. 1uuutiiiiiiiittiii i eee et eetbis s s e s s s eetbbs s e e s s s e ea bbb s e e e s s essbbba s eeassensbbaanses 163
12.5 CPU REGISTERScciiittttiii ettt ettt et e e e e et et bt e e e st e e s b b s e e e s s ee s bbb s eesseesbbbaseeesseensses 165
12.6 PORT CONFIGURATION L..iitttttiiiiieiiiettiisiseessesttsssseessseessbaassessseesssbaa s eesssesssbaasssessseesssanssessses 166
12.7 INPUT-OUTPUT PORT REGISTERS.......ctttttiiiiiiiiiitiiiiiiieee s e eetbis e s s s s e eab s s s s s e ssbbb s e e s s seasbbanaaas 168
12.8 | SOCHRONOUS CONTROL/STATUS REGISTERScciiiiiiiiieiiiieeieeeeeesssssssssssssssssssssssssssssssssssssssnes 171
12,9 1PC REGISTERS....cueteeeeeeeseeeeeeeesesesesesesesseesesstse et et etetesteseseseeeeeeseseseseseseseseseseeeseses et eeeteneseesaes 174
2 O T 1N == =0 = T TR 176
12.11 ENDPOINT O CONTROL AND STATUS REGISTERS.....uiiiiiiiiiiiiiiiieeeeieetiis e e s eesbb e e s e eaabaans 184
12.12 ENDPOINT 1-7 CONTROL AND STATUS REGISTERS......cciiittitiiiiiieeiieetiiinie e e s s esssia e e s s eesssaannns 186
12.13 GLOBAL USB REGISTERS.....tttuiiiiiiiiitttiiiieestiisttiissesssisssiseesstesssieessesste s 193
A S N S I Y Y N 1S = TS TR 201
J2.15 SETUP DATA cetttttttututtuuetesessuessessnnns 203
12.16 ISOCHRONOUS FIFQO SIZES....uuiiiiiiiiiiiiiiii ettt a s e s s e e e e e s s e e eab b s 204
13 EZ-USB AC/DC PARAMETERS. ... 205
13.1 ELECTRICAL CHARACTERISTICSo s 205
13.1.1 ABSOLUTE MAXIMUM RATINGS..... ..o s 205
13.1.2 OPERATING CONDITIONS..... ..o 205
13.1.3 DC CHARACTERISTICS..... e 205
13.1.4 ACELECTRICAL CHARACTERISTICSo 206
13.1.5 GENERAL MEMORY TIMING 206
13.1.6 PROGRAM MEMORY READ ... s 206
13.1.7 DATAMEMORY READot 206
13.1.8 DATAMEMORY WRITE ... 206
13.1.9 FAST DATA WRITE ... s 207
13.1.10 FAST DATA READcoooiiiiiiiiieeeeeee ettt ettt ettt ettt e eeeeeeseee s essesssssasssssessssssnsssssssssssssnnnnnnns 207

14 EZ-USB PACKAGING ... 216
14.1 A4-PIN PQFP PACKAGE ..1tttiiiiiiiiitiiettte et ssitiee et s e e st sstttae e s s e e s s sasbbae e s e e e s s aasbaaeesaesssnsssaneeeaaeenn 216
14.2 80-PIN PQFP PACKAGE ...ttt ettt ettt s st s e e e s s st aa e e e e e e s s ssnnbaaeeeaeesnnnnes 218

EZ-USB TRM YV 1.51

Figures

Figure 1-1. AN2131S (44 pin) Simplified Block Diagram...........ccccceeiieiiiienniie e 2
Figure 1-2. AN2131Q (80 pin) Simplified Block Diagramc.cccceevveeiniieinieeenieeene 3
Figure 1-3. USB PaCKELS..........ooiiiiieiieie e 4
Figure 1-4. Two bulk transfers, IN and OUTc.oooiiiiiiieeriee e 6
Figure 1-5. AN INterrupt TranSFeroo e 7
Figure 1-6. AN 1SOCNIONOUS traNSFEYccouiiiiiiie e 7
Figure 1-7. A Control TranSfer........oooeii i 8
Figure 1-8. What the SIE dOES..........cocuiiiiieiiie et 10
Figure 1-9. EZ-USB Family MemDErS.........cooiiiiiiiiieniee et 15
Figure 1-10. 80-pin PQFP Package (AN2131Q and AN2141Q)......ccceuruerervereriieeenieenns 16
Figure 1-11. 44-pin PQFP Package (AN2121S and AN2131S).......ccceevveeriiereniieenieenns 17
Figure 1-12. 44-pin PQFP Package (AN2125S, AN2126S, AN2130S, AN2135S)......... 18
FIgure 2-1. 8051 REGISIEISuueeeiiiieeiieeeiieeesitee e sitee st e e st e e s ae e e s sseeessneeeessneeesnseeesnneeens 26
Figure 3-1. EZ-USB 8K Memory Map. Addresses arein Hexadecimal..............cc........ 32
Figure 3-2. Unused bulk endpoint buffers (shaded) used as data memory 33
Figure 3-3. EZ-USB Memory Map With EA=0........ccoociiiiiiieiieeeeeeee e 35
Figure 3-4. EZ-USB Memory Map With EA=1........cooiiiiiiieeieeeeeee e 37
Figure 3-5. 8K ROM, 2K RAM VEISIONccoiiiiiiiiiiesiieesieeesieeessteeessneessssseeesseeesneeens 38
Figure 3-6. 32K ROM, 4K RAM VEISIONccoiuiiiiiiiieiiieesieee et e st siee e seee e seeeesneee s 39
Figure 4-1. EZ-USB INPU/OULPUL PNoiiiiiiiiiieeeiee s 40
Figure 4-2. Alternate FUNCLiON iSaN OUTPUTeiiiiiiieiiieeceee e 42
Figure 4-3. Alternate FUNCLION iSan INPUTcooiiiiiiiieee e 42
Figure 4-4. Registers associated With PORTS A,B,C.....oooiiiiiiiiieeiieeee e 43
Figure 4-5. GENEral 12C TrANSFENv.cviveeeeeeeeeeeeeeee e 44
Figure 4-6. Addressing an 12C Peripheral............c.oucveeeieeieeeeeeeeeseeesee e 45
FIQUIE 4-7. 12C REGISIEIS........eveeeeeeeeeeeesee e see s s sn s en s en e enaneeneneas 46
Figure 5-1, USB Control and StatuS REQISIENeeiiiiieiiiieciiee e 62
Figure 5-2. DIiSCONNECE PIN TOGIC......ceiiiieiiiieiiiie et e e 62
Figure 5-3. Typical Disconnect Circuit (DISCOE=1)ccccuveiiiiieiiiiieeiieeeniee e 62
Figure 6-1. Two BULK transfers, IN and OUTcoocoeeiiiieniiieiiie e 73
Figure 6-2. Registers Associated with Bulk ENdpoints...........cocceeiiiieiiiin e 75
Figure 6-3. Anatomy of a BUIK IN Transfer..........cccceeiiiiiiiiiiiieeeeeee e 76
Figure 6-4. Anatomy of a Bulk OUT Transfer.........coooeieiiiieiiiieeiie e 79
Figure 6-5. Bulk Endpoint Toggle CONrolccoeiiieiiieeiiiee e 83
Figure 6-6. Example code for asimple (polled) BULK transfer...........ccccoveeeniinnnnnnnns 84
Figure 6-7. Interrupt JUMP Table......ooueiiie e 88
Figure 6-8. INT2 INtEITUPE VECLOTveieieiieiiie ettt 89
Figure 6-9. Interrupt Service Routine (ISR) for endpoint 6-OUTccceveeeiiieeeiiennns 89
Figure 6-10. Background program transfers endpoint 6-OUT data to endpoint 6-IN...... 90
Figure 6-11. INitialiZation FOULINE..........ceiiiieiiiieeeiee ettt e s e e snee e 91
Figure 6-12. AULOPOINTEr REJISIENS.eiiiiiieiiie et eee e 92
Figure 6-13. Use of the AULOPOINTESc.eiiiiiie et 93
Figure 6-14. 8051 code to transfer external datato aBulk IN Buffer............ccccceeeeneenn 9

EZ-USB TRM YV 1.51

Figure 7-1. A USB Control Transfer. Thisonehasadatastage.ccccevvveeerieeennennns 96

Figure 7-2. The two interrupts associated with EPO CONTROL transfers...........ccocuee... 98
Figure 7-3. Registers associated with EPO Control Transfers..........cooovvveiieiiicniecninens 99
Figure 7-4. Dataflow for a Get_Status REQUESL..........ccveveiiieeiiiieeeee e 102
Figure 7-5. Using the Setup Data Pointer (SUDPTR) for Get_Descriptor requests....... 109
Figure 8-1. EZ-USB isochronous endpointS 8-15cc.eeeiiiieiiiieiiiie e 119
Figure 8-2. 1sochronous IN endpoint regiSterS.........uuevuereiiieeiiiee e 120
Figure 8-3. 1S0Chron0US OUT FEQISIEIS.eiiiuiiieiiieesiieesieeesreee e e e e 122
Figure 8-4. FIFO Start AddresS fOrmatcueeiiueeiiiieeniiee e 123
Figure 8-5. Assembler translates FIFO sizesto addresses.........vvvveeeiieeenieeenieeenen. 124
Figure 8-6. 8051 code to transfer data to an isochronous FIFO (IN8DATA)............... 125
Figure 8-7. 8051 MOVX INSIIUCLIONS.......ccoiuiiiiiiiieeiiieesiee et e e 126
Figure 8-8. Fast Transfer, EZ-USB t0 outSIde MEmMOrYccccveiiieennieeeniee e 127
Figure 8-9. Fast Transfer, outside memory to EZ-USB..........ccccco i 127
Figure 8-10. The FASTXFR register controls FRD# and FWR# strobes...................... 129
Figure 8-11. Fast WIEE tIMINGc..eeeiiiieiiiie e 130
Figure 8-12. Fast REA tIMINGcc.veieiiiieaiiie et e e 131
Figure 8-13. 8051 code to transfer 640 bytes of external datato an isochronous IN FIFO
.. 132
FIQure 8-14. ISOCTL FEQISLEN ...cccueieiiieeeiieeeeiteeestee sttt st ssee e snee e e snneeennneas 133
Figure 8-15. ZBCOUT FEQISEN.......eeeiieeeeiieeeeiieeesieeestieesteeesteeessseeesssaeessnseeesnseeesnseas 134
Figure 9-1. EZ-USB Wakeup INLEITUPL.........coiiiiriiieerieee s e e seeee e 136
FIgure 9-2. USB INTEITUPESeeiiiiiie ettt e e 138
Figure 9-3. The order of clearing interrupt requests is important...........ccccoeceeerveeennnen. 140
Figure 9-4. EZ-USB INterrupt REJISIENScooiiiiiiie e 141
Figure 9-5. SUTOK and SUDAYV INTEITUPES......coiiiieiiiieesiiee e 142
Figure 9-6. A Start Of Frame (SOF) packetcceeeiiiiiiiiieciie e 142
Figure 9-7. The Autovector mechaniSm in aCtionccocceeeiiiie e 145
Figure 9-8. 1°C interrupt enable bits and registers.............ocvveeuveeeeceereeesee e, 146
FIQUre 10-1. EZ-USB IESELScoiiiiieiiiieeiiee ettt sttt nnse e e nnneas 147
Figure 11-1. Suspend-Resume CONLIOlcueiiiiiriiiiee i 154
Figure 11-2. EZ-USB SUSPEN SBOUENCE......ccuveeeieieeieieesieeesieeeeieeessieeessnseeesnseaesneeas 155
Figure 11-3. EZ-US RESUME SEQUENCEeeeeurieeiiieasreeesteeeaseeesssseessseesssssessssseessnsens 156
Figure 11-4. USB Control and Status regiStereeeiuereiiieeiiie e 157
Figure 12-1. Register desCription fOrMELcooiuiriiiieeiiiee e 160
Figure 13-1. External memory timMiNg.........c.cooiueriiiereniiee e sieee e e e seee e seee e 208
Figure 13-2. Program memory read tiMiNg...........ocueeeiueeeniiee s eiee e seee e seee e 208
Figure 13-3. Data memory read tiMIiNg.........cooueeiiieeeniiee e 209
Figure 13-4. Data memory WHte tiMING........cccueeeiueeeniiieeaieeesieeesseeee e seee e seeeesneeas 209
Figure 13-5. Fast transfer mode block diagram............cccoeveeiiiiiiiiie e 210
Figure 13-6. Fast transfer read timing [MOde 00]c.coeiiieiiiieiiiie e 211
Figure 13-7. Fast transfer write timing [Mode 00]..........cooviieeiiiieiiiie e 211
Figure 13-8. Fast transfer read timing [MOde 01]cceeiiiieiiiieiiie e 212
Figure 13-9. Fast transfer write timing [MOde O1]........c.cooiiieeiiiiiiiiie e 212
Figure 13-10. Fast transfer read timing [Mode 10]coovieeiiiieiiiie e 213
Figure 13-11. Fast transfer read timing [MOde 11]cccoevuireiiiieiiiie e 214

EZ-USB TRM YV 1.51

Figure 13-12. Fast transfer write timing [Mode 11].........cooveeeiiiieiiiie e 214

Figure 14-1. 44-Pin PQFP Package (T0P VIEW)cc.eeiiiiiieiieee e 216
Figure 14-2. 44-Pin PQFP Package (SIde VIEW)coiiiiiiiiiieciiee e 216
Figure 14-3. 44-Pin PQFP Package (detail VIEW).........cccooiiiieiiiieiieee e 217
Figure 14-4. 80-Pin PQFP Package (T0P VIEW)c.eeviiiiieiiiee e 218
Figure 14-5. 80-Pin PQFP Package (SIde VIEW)cooiuiiiiiiieeiee e 218
Figure 14-6. 80-Pin PQFP Package (SIde VIEW)cooiiiiiiiieeciee e 219

EZ-USB TRM YV 1.51

Table 1-1. USB PIDS......co oottt sttt snae et e e naeenneeannes 4
Table 2-1. EZ-USB INLEITUPRLScoiiiiieiiiie ittt 27
Table 2-2. Added SFR Registers and BitS.........cocceeiiiiiiiiiieiiieceee e 29
Table 4-1. 10 pin functions for PORTXCFG=0 and PORTXCFG=L1.........cccccceecvvrreeennne. 41
Table 4-2. Strap Boot EEPROM Address Linesto these values............cooceeevieeenieennne. 49
Table 4-3. ReSUILS Of POWEN-0N [2C tESE........veveeeeeeeeeeeeeeeee et 50
Table 5-1. EZ-USB Default ENAPOINES.......cccviiiiiieiiiiee e 52
Table 5-2. How the EZ-USB core handles EPO requests when ReNum=0...................... 53
Table 5-3. ANChOr DOWNIOAAcooiuiiiiiiieeiie e 54
Table 5-4. ANCOr UPIOaQ........ccueiiieieie e e 54
Table 5-5. EZ-USB Core Action at POWEr-Up........ccoceiiiiiieiiieciiee e 56
Table 5-6. EZ-USB Device Characteristics, No Serial EEPROMcccceiviieenieennne. 58
Table 5-7. EEPROM Data Format for “B0” LOad.........cccceeeiiereiiiieeiiiee e 59
Table 5-8. EEPROM Data Format for “B2” LOad.........cccceeeiiieieiiiieiiiie e 60
Table 5-9. Anchor Default Device DESCIIPLON.cuiiuiiiiiiieeiiee e 63
Table 5-10. Anchor Default Configuration DeSCriPLOr.........coceveiiieeiriee e 64
Table 5-11. Anchor Default Interface 0, Alternate Setting O Descriptorcccceeveee... 64
Table 5-12. Anchor Default Interface 0, Alternate Setting 1 DesCriptorc.ccceveee.... 64
Table 5-13. Anchor Default Interface 0, Alternate Setting 1, Interrupt Endpoint
(DS]] (] PSPPSRSO 65

Table 5-14. Anchor Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors66
Table 5-15. Anchor Default Interface 0, Alternate Setting 1, Isochronous Endpoint

(DS] o (] £ TSP UURPOPRRORI 68
Table 5-16. Anchor Default Interface 0, Alternate Setting 2 DesCriptorcccceveee.... 69
Table 5-17. Anchor Default Interface 0, Alternate Setting 2, Interrupt Endpoint

DS] o] (] PSPPSRI 69

Table 5-18. Anchor Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors70
Table 5-19. Anchor Default Interface 0, Alternate Setting 2, Isochronous Endpoint

(DS] o (] = TSP UURPOPRRORI 71
Table 6-1. EZ-USB Bulk, Control and Interrupt ENdpoints............cccooeeeereerinieeenieeene 73
Table 6-2. EZ-USB Endpoint O-7 Buffer AddreSSeSceveiieieiiiieeiiee e 82
Table 6-3. 8051 INT2 INLEITUPL VECTONcoiieieeiiie e 86
Table 6-4. Byte inserted by EZ-USB core at location 0x45 if AVEN=1...........cccccc...e. 86
Table7-1. The Eight Bytesin aUSB SETUP Packét..........cccoceiiiiiiiieeiniieecieeeciene 100
Table 7-2. How the 8051 Handles USB Device Requests (RENUM=1)...........ccceeeeuvennne 101
Table 7-3. Get Status-Device (Remote Wakekup and Self-Powered bits)..................... 103
Table 7-4. Get Status-Endpoint (Stall Dits)cceviiiiiiiiii e 104
Table 7-5. Get StatUS-INTEITACE......cooeieie e 105
Table 7-6. Set Feature-Device (Set Remote Wakeup Bit)oovveeeiiieeiiineiiieecieens 106
Table 7-7. Set Feature-Endpoint (Stall)cooveeiiieiiieeeee e 106
Table 7-8. Clear Feature-Device (Clear Remote Wakeup Bit)cocceeivieeiiiieneiinennn. 108
Table 7-9. Clear Feature-Endpoint (Clear Stall)........ccccevieiiiiieiiieee e 108
Table 7-10. Get DESCIPLOr-DEVICE.cccuueeiiieeeiiie et 110

EZ-USB TRM YV 1.51

Table 7-11. Get Descriptor-Configurationccocceeeiieeeiiee e 111

Table 7-12. Get DESCIPLOr-SEI NGvveeiieieeitieesiie s sree e snee e 111
Table 7-13. Set DeSCriPtOr-DEVICEccccueiiiiiieeiie e 112
Table 7-14. Set Descriptor-Configurationcoovcueeeiieeeniiee e 112
Table 7-15. Set DeSCriPtOr-SI NGeeeiiiieeiiieeeiieesiee e e e sre e e snee e 112
Table 7-16. Set CONFIQUIELIONceiueieiiieeeiiie e etee e stee et n e snee e 114
Table 7-17. Get CONfFIQUIALION.......cccueieiiiie e etie ettt e e ne e nee e 114
Table 7-18. Set Interface (Actually, Set Alternate Setting ASfor Interface IF) 115
Table 7-19. Get Interface (actually, Get Alternate Setting AS for Interface IF)............ 116
Table 7-20. SYNC FIaAME ... e e ne e e nee e 117
Table 7-21. ANChOr DOWNIOAAeiiiiiieiiie e 118
Table 7-22. ANChOr UPIOad..........ooiiiiieiiiie et 118
Table 8-1. Isochronous endpoint FIFO Starting Address Registers..........ococvevceeeennennns 123
Table 8-2. Addreses for RD# and WR# vs. ISODISAB Dit.......ccocoeeiiiiiiiiieeiieeeeieene 133
Table 9-1. EZ-USB INTEITUPLSeeiiiiiieeiiie ettt 135
Table 9-2. 8051 JUMP INSIIUCTION.......coiiiiiaiiieeiiieesiee ettt sne e snee e 144
Table 9-3. A typical USB jump table..........coouiiiiiiiiiieee e 144
Table 10-1. EZ-USB states after POWEr-0N FESEL..........eeeiueeeriieeiiieeeriiee e siee e seee e 148
Table 10-2. EZ-USB states after aUSB bDUSTeSEtoovveiiiiiiiiiiecee e 151
Table 10-3. Effects of an EZ-USB disconnect and re-ConNnect............cccceeveeeerieeenneenns 152
Table 10-4. Effects of various EZ-USB resets. “U” means “unaffected” 153
Table 12-1. Bulk endpoint buffer memory addresses..........oovvveiiieeiiiee s 161
Table 12-2. Isochronous endpoint FIFO register addreSses.........ooovvvvieeiiieeeniieeesineenns 162
Table 12-3. Isochronous endpoint Byte Count Register addresses............occvveveeeernenns 163
Table 12-4. IO Pin aternate fUNCLIONScuiiiiiiiiciiee e 167
Table 12-5. Control and Status register addressess for endpointS 0-7..........cccccveeeevennn. 186
Table 12-6. Isochronous FIFO Start Address registers........oouuveiieeinieeenieeesiee e 204

EZ-USB TRM YV 1.51

1 Introducing EZ-USB

1.1 Introduction

Like awell designed automobile or appliance, a USB periphera’s outward simplicity
hidesinternal complexity. There'salot going on “under the hood” of a USB device,
which gives the user anew level of convenience. For example:

A USB device can be plugged in anytime, even when the PC is turned on.

When the PC detects that a USB device has been plugged in, it automatically
interrogates the device to learn its capabilities and requirements. From this
information the PC automatically |oads the device' s driver into the operating
system. When the device is unplugged, the operating system automatically logs it
off and unloads its driver.

USB devices do not use dip-switches, jumpers, or configuration programs. There
isnever an IRQ, DMA, MEMORY or 10 conflict with a USB device.

USB expansion hubs make the bus available to dozens of devices.

USB isfast enough for printers, CD-quality audio, and scanners.
USB isdefined in the “Universal Serial Bus Specification Version 1.0” (http://usb.org),
a 268 page document which describes al aspects of a USB device in elaborate detail.
This EZ-USB Technical Reference Manual describes the EZ-USB chip along with USB
topics that should provide help in understanding the Specification.

The Anchor Chips EZ-USB is a compact integrated circuit that provides a highly
integrated solution for a USB peripheral device. Three key EZ-USB features are:

The EZ-USB family provides a “soft” (RAM-based) solution that allows
unlimited configuration and upgrades.

The EZ-USB family delivers full USB throughput. Designs that use EZ-USB are
not limited by number of endpoints, buffer sizes or transfer speeds.

The EZ-USB family does much of the USB housekeeping in the EZ-USB core,
simplifying code and accelerating the USB learning curve.

This chapter introduces some key USB concepts and terminology that should make
reading the rest of this Technical Reference Manual easier.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 1

1.2 EZ-USB Block Diagrams

+5V

o Serial —bytes > ,op Program &
> Interface Interface Data G Ports
Engine € bytes — RAM ;
‘ (SIE) |
o General

USB USB _ Purpose
Connector | Transceiver Microprocessor

Figure 1-1. AN2131S (44 pin) Smplified Block Diagram

The Anchor Chips EZ-USB chip packs the intelligence required by a USB peripheral
interface into a compact integrated circuit. AsFigure 1-1 illustrates, an integrated USB
transceiver connects to the USB bus pins D+ and D-. A Serial Interface Engine (SIE)
decodes and encodes the serial data and performs error correction, bit stuffing, and other
signaling-level details required by USB, and ultimately transfers data bytes to and from
the USB interface.

The internal microprocessor is an enhanced 8051 with fast execution time and enhanced
features. It usesinternal RAM for program and data storage, making the EZ-USB family
a“soft” solution. The USB host downloads 8051 program code and device personality
into RAM over the USB bus, and then the EZ-USB chip re-connects as the custom device
as defined by the loaded code.

The EZ-USB family uses an enhanced SIE/USB interface (called the Anchor “core”)
which has the intelligence to function as afull USB device even before the 8051 is
running. This allows the USB host to download code into EZ-USB RAM, and then start
the 8051. The enhanced core simplifies 8051 code by implementing much of the USB
protocol itself.

EZ-USB chips operate at 3.3 volts. This simplifies the design of bus-powered USB
devices, since the 5V power available in the USB connector (which the USB
specification allows to be aslow as 4.4V) can drive a 3.3 volt regulator to deliver clean
isolated power to the EZ-USB chip.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 2

+5V

\
D ‘ Serial [BYIeS M g | Progamé
B Interface Interface
Engine le—bytes — RAM
(SIE)
GND General
UsB | USB _ Purpose
Connector | Transceiver Microprocessor

10 Ports >

Address Bus

Daté Bus

Figure 1-2. AN2131Q (80 pin) Smplified Block Diagram

External
Memory,

FIFOS,
etc.

Figure 1-2 illustrates the AN2131Q, an 80-pin version of the EZ-USB family. In addition
to the 24 10 pins, it contains a 16-bit address bus and 8-bit data bus for externa memory

expansion.

A specia “fast transfer” mode moves data directly between externa logic and internal
USB FIFOS. The fast transfer mode, along with abundant endpoint resources, allows the
EZ-USB family to support transfer bandwidths beyond the maximum required by the

USB specification.

1.3 The USB Specification

The USB Specification Version 1.0 is available on the Internet at http://usb.org.

Published in January 1996, the specification is the work of a founding committee of
seven industry heavyweights. Compag, DEC, IBM, Intel, Microsoft, NEC and Northern
Telecom. Thisimpressive list of implementers assures USB as the low to medium speed
PC connection method of the future.

A glance at the USB Specification makes it immediately apparent that USB is not nearly

as simple as the customary serial or parallel port. The spec uses new terms like

“endpoint” “isochronous’, and “enumeration”, and finds new uses for old terms like

“configuration”, “interface” and “interrupt”. Woven into the USB fabric is a software
abstraction model that deals with things such as “pipes’. The spec even contains detail
about the connector types and wire colors.

14 Tokensand PIDS

In this manual, you'll read statements like, “When the host sends an IN token...”. Or,
“The device responds with a ACK”. What do these terms mean?

EZ-USB TRM YV 1.51

Chapter 1. Introducing EZ-USB

Page 3

A USB transaction consists of data packets, identified by special codes called Packet ID’s
or PIDS. A PID signifieswhat kind of packet is being transmitted. There are four PID
types, as shown in Table 1-1.

Table 1-1. USB PIDS

PID Type PID Name
Token IN, OUT, SOF, SETUP
Data DATAO, DATA1
Handshake ACK, NAK, STALL
Speciad PRE
2 c Al g c||| c
o A Payload | R|[| A S p|| N|| R|||BA]| Payload || R||[A
U T C C U ol ol ¢ T D (o C
T N| Data NI < T (=il ~ ata Il «
1 6 0] 6
Token Packet Data Packet H/S Pk Token Packet Data Packet H/S Pk]

Figure 1-3. USB Packets

Figure 1-3 illustrates a USB transfer. Packet @ isan OUT token, indicated by the OUT
PID. The OUT token signifies that data from the host is about to be transmitted over the
bus. Packet @ contains data, asindicated by the DATA1 PID. Packet ® isahandshake
packet, sent by the device using the ACK (acknowledge) PID to signify to the host that
the device received the data error-free.

Continuing with Figure 1-3, a second transaction begins with another OUT token @,
followed by more data ®, thistime using the DATAO PID. Finaly, the device again
indicates success by transmitting the ACK PID in a handshake packet ®.

Why two DATA PIDS, DATAO and DATA1? Because the USB architects took error
correction very seriously. As mentioned above, the ACK handshake is a signal to the
host that the peripheral received data without error (the CRC portions of the packet are
used to detect errors). But what if a handshake packet itself is garbled in transmission?
To detect this, each side, host and device, maintains a data toggle bit, which is toggled
between data packet transfers. The state of thisinternal toggle bit is compared with the
PID that arrives with the data, either DATAO or DATAL. When sending data, the host or
device sends alternating DATAO-DATAL1 PIDS. By comparing the Data PID with the
state of the internal toggle bit, the host or device can detect a corrupted handshake packet.

SETUP tokens are unique to CONTROL transfers. They preface eight bytes of data from
which the peripheral decodes host Device Requests.

SOF tokens occur once per millisecond, denoting a USB frame.

There are three handshake PIDS: ACK, NAK and STALL.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 4

ACK means “success’; the data was received error-free.

NAK means “busy, try again”. It's tempting to assume that NAK means “error”, but
it doesn’t. A USB device indicates an error by not responding.

STALL means that something unforeseen went wrong (probably as aresult of mis-
communication or lack of cooperation between the software and firmware writers). A
device sends the STALL handshake to indicate that it doesn’t understand a device
request, that something went wrong on the peripheral end, or that the host tried to
access aresource that isn’t there. It’slike “halt”, but better, since USB provides a
way to recover from a stall.

A PRE (Preamble) PID precedes alow-speed (1.5 Mbit/sec) USB transmission. The EZ-
USB family supports high speed (12 Mbit/sec) USB transfers only, so it ignores PRE
packets and the subsequent low speed transfer.

1.5 Host IsMaster

Thisis afundamental USB concept. There is exactly one master in aUSB system: the
host computer. USB devices respond to host requests. USB devices cannot send
information between themselves, as they could if USB were a peer-to-peer topology.

Actualy, there is one case where a USB device can initiate signaling without prompting
from the host. After being put into alow power suspend mode by the host, a device can
signal aremote wakeup. But that’s the only way to yank the host’s chain. Everything
el se happens because the host makes device requests and the device responds to them.

There's an excellent reason for this host-centric model. The USB architects were keenly
mindful of cost, and the best way to make low cost peripheralsisto put most of the
smarts into the host side, the PC. If USB had been defined as peer-to-peer, every USB
device would have required more intelligence, raising cost.

Here are two important consequences of the “host is master” concept:

151 Recelving data from the host

To send datato a USB peripheral, the host issues an OUT token followed by the data. |If
the peripheral has space for the data, and accepts it without error, it returns an ACK to the
host. If itisbusy, it instead sends a NAK. If it finds an error, it sends nothing back. For
the latter two cases, the host re-sends the data at a later time.

1.5.2 Sendingdatato the host

A USB device never spontaneously sends data to the host. Nevertheless, in the EZ-USB
chip, there’ s nothing to stop the 8051 from loading data for the host into an endpoint

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 5

buffer (Section 1.13) and “arming” it for transfer. But the datawill sit in the buffer until
the host sends an IN token to that particular endpoint. If the host never sends the IN
token, the data sits there forever.

1.6 USB Direction

Once you accept that the host is the bus master, it’s easy to remember USB direction:
OUT means from the host to the device, and IN means from the device to the host. EZ-
USB nomenclature uses this naming convention. For example, an endpoint that sends
datato the host isan IN endpoint. This can be confusing at first, since the 8051 sends
data by loading an IN endpoint buffer, but keeping in mind that an 8051 “out” isan IN to
the host, it makes sense.

1.7 Frame

The USB host provides atime base to all USB devices by transmitting an SOF (Start Of
Frame) packet every millisecond. The SOF packet includes an incrementing, 11-bit
frame count. The 8051 can read this frame count from two EZ-USB registers. SOF-time
has significance for isochronous endpoints; it’s the time that the “ping-ponging” buffers
switch places. The EZ-USB core provides the 8051 with an SOF interrupt request for
servicing isochronous endpoint data.

1.8 USB Transfer Types

USB defines four transfer types. These match the requirements of different data types
delivered over the bus. (Section 1.13, “Endpoints’, explains how the EZ-USB family
supports the four transfer types.)

1.8.1 Bulk Transfers

b C
AllEllc
Al Payioad R a ol o|| il R
A Data 1 K TDDC
rR||P| 5
1 6

Data Packet /S P Token Packet Data Packet /S P

Payload
Data

> —
o>

(200> |
[vozm |
[90=n0]
o> 4> 0]

[0~ o0n0
(@]

—
o
=
[}
=1
o
O
o
=
@®
o

Figure 1-4. Two bulk transfers, IN and OUT

Bulk datais “bursty” traveling in packets of 8, 16, 32 or 64 bytes. Bulk data has
guaranteed accuracy, due to an automatic re-try mechanism for erroneous data. The host
schedules bulk packets when there is available bus time. Bulk transfers are typically used
for printer, scanner or modem data. Bulk data has built-in flow control, provided by
handshake packets.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 6

1.8.2 Interrupt Transfers

o>

[vozm]
ENETY

Payload

Data

[z=—]
(noo>]

Figure 1-5. An Interrupt Transfer

Data Packet H/S Pk

4
o
=
[}
=1
o
O
o
=
@®
o

Interrupt datais like bulk data, but exists only for IN endpoints in the Version 1.0 USB
Specification. Interrupt data can have packet sizes of 1-64 bytes. Interrupt endpoints
have an associated polling interval that insures that they will be “pinged” (will receive an
IN token) by the host on aregular basis.

Note:

At thiswriting, OUT interrupt endpoint capability is added in the draft version of the
USB 1.1 Specification. Due to the general purpose nature of the EZ-USB bulk/interrupt
endpoints, the EZ-USB family also accommodates OUT interrupt endpoints.

1.8.3 Isochronous Transfers

Payload
Data

EXETs

Data Packet

Figure 1-6. An Isochronous transfer

Isochronous data is time-critical, used for “streaming” data like audio and video. Time of
delivery is the most important requirement for isochronous data. In every USB frame, a
certain amount of USB bandwidth is allocated to isochronous transfers. To lighten the
overhead, isochronous transfers have no handshake (ACK/NAK/STALL), and no retries.
Error detection islimited to a 16-bit CRC. Isochronous transfers do not use the data
toggle mechanism; isochronous data uses only the DATAO PID.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 7

1.84 Control Transfers

ENEREE C

Al E|| C
E ol NIl R A|l 8bytes || R SETUP
T T|| Setup C

D|| D|| C
Uielpls Al Data 1 Stage
PILIL LT 0 6
\Token Packet Data Packet
(—M — —— N\ (— (

D C

Al E|| C
1|0 N|lR[||[2] Payload Rl 1A DATA
N| || Df c||]| A Data 1 K Stage
I | 6 (optional)
\Token Packet J | Data Packet \H/S Pk
olA| <l |2 all | a
o O NIRINEF S (e STATUS
T D|| D|| C A

Rl PS4 é X Stage
Token Packet) (Data PKJ \H/S Pk

Figure 1-7. A Control Transfer

Control transfers are used to configure and send commands to adevice. Being “mission
critical”, they employ the most extensive error checking USB offers. Control transfers
are delivered on a“best effort” basis by the host (“best effort” is defined by a six step
process in the USB Specification, Section 5.5.4). The host reserves a part of each USB
frame time for Control transfers.

Control transfers consist of two or three stages. The SETUP stage contains eight bytes of
USB CONTROL data. An optional DATA stage contains more data, if required. The
STATUS (or handshake) stage allows the device to indicate successful completion of a
control operation.

1.9 Enumeration

Y our computer isON. You plug in aUSB device, and the Windows™ cursor switches to
an hourglass, and then back to a cursor. And magically, your device is connected and its
Windows driver isloaded! Anyone who has installed a sound card into a PC and futzed
with jumpers, drivers and | O/Interrupt/DMA settings knows that a USB connection can
be akin to amiracle. We've al heard about “plug and play”, and USB deliversthe red
deal.

How does all this happen automatically? Inside every USB deviceis atable of
‘descriptors’ that are the sum total of the device' s requirements and capabilities. When
you plug into USB, the host goes through a‘sign-on’ sequence:

1. Thehost sends a“Get_Descriptor/Device’ request to address zero (devices must
respond to address zero when first attached).

2. Thedevice dutifully responds to this request by sending ID bytes data back to the
host telling what it is.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 8

3. Thehost sendsthe device a‘Set_Address’ request, which givesit aunique
address to distinguish it from the other devices connected to the bus.

4. The host sends more “Get_Descriptor” requests, asking for more device
information. From this it learns everything else about the device, like how many
endpoints the device has, its power requirements, what bus bandwidth it requires,
and what driver to load.

This sign-on processis called Enumeration.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 9

1.10 The Anchor Core

o>
ozm
OO

D
A o) A A
X T IR '3 X
Token Packet Data Packet H/S Pk Token Packet Data Packet H/S Pk
Payload
Data
Serial
Interface Payload
. Data
Engine

(SIE)

USB <i

Tranceiver

o, 0xTO
o, 0xXO

s
vi/iﬁ/%

A
C
K

Figure 1-8. What the SE does

Every USB device has a Serial Interface Engine, or SIE. The SIE connects to the USB
datalines D+ and D-, and delivers bytes to and from the USB device. Figure 1-8
illustrates a USB bulk transfer, with time moving from left to right. The SIE decodes the
packet PIDS, performs error checking on the data using the transmitted CRC bits, and
delivers payload data to the USB device. If the SIE encounters an error in the data, it
automatically indicates “no response” instead of supplying a handshake PID. This
instructs the host to re-transmit the data at a later time.

Bulk transfers such as the one illustrated in Figure 1-8 are asynchronous, meaning that
they include aflow control mechanism using ACK and NAK handshake PIDS. The SIE
indicates “busy” to the host by sending a NAK handshake packet. When the peripheral
device has successfully transferred the data, it commands the SIE to send an ACK
handshake packet, indicating success.

To send data to the host, the SIE accepts bytes and control signals from the USB device,
formats it for USB transfer, and sends it over the two-wire USB. Because the USB uses a
self-clocking data format (NRZI), the SIE aso inserts bits at appropriate places in the bit
stream to guarantee a certain number of transitionsin the serial data. Thisis caled “bit
stuffing”, and is transparently handled by the SIE.

One of the most important features of the EZ-USB family isthat it is soft. Instead of
requiring ROM or other fixed memory, it contains internal program/data RAM which is
downloaded over the USB itself to give the device its unique personality. This makes
modifications, spec revisions and updates a snap.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 10

The EZ-USB family can connect as a USB device and download code into internal RAM,
al whileitsinternal 8051 isheld in RESET. Thisisdone by an enhanced SIE which
does al of the work shown in Figure 1-8, plus more. It contains additional logic to
perform afull enumeration, using an internal table of descriptors. It also respondsto a
vendor specific “Anchor download” device request to load itsinternal RAM. An added
bonus s that the added SIE functionality is a'so made available to the 8051. This saves
8051 code and processing time.

Throughout this manual, the SIE and its enhancements are referred to as the “ Anchor
Core’.

1.11 EZ-USB Microprocessor

The EZ-USB microprocessor is an enhanced 8051 core. Use of an 8051 compatible
processor makes extensive software support tools immediately available to the EZ-USB
designer. This enhanced 8051 core, described in Chapter 2 and Appendices A-C, has the
following features:

4-clock cycle, as compared to the 12-clock cycle of a standard 8051, giving a 3X
speed improvement.

Dual data pointers for faster memory-to-memory transfers.

Two UARTS.

Three counter-timers.

An expanded interrupt system.

24 MHz clock.

256 bytes of internal register RAM.

Standard 8051 instruction set—if you know the 8051, you know EZ-USB.

The enhanced 8051 core uses on-chip RAM as program and data memory, giving EZ-
USB its “soft” feature. Chapter 3, “EZ-USB Memory”, describes the various memory
options.

The 8051 communicates with the SIE using a set of registers, which occupy the top of the
on-chip RAM address space. These registers are grouped and described by function in
individual chapters of this reference manual, and summarized in register order in Chapter
12, “EZ-USB Registers’.

The EZ-USB 8051 hastwo duties. First, it participates in the protocol defined in Chapter
9 of the USB Specification, “USB Device Framework”. Thanksto EZ-USB
enhancements to the SIE and USB interface, the 8051 firmware associated with USB
overhead is smplified, leaving code space and bandwidth available for the 8051's
primary duty, to help implement your device. On the device side, abundant input/output
resources are available, including 10 ports, UARTS, and an I°C bus master controller.
These resources are described in Chapter 4, “EZ-USB Input/Output”.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 11

1.12 ReNumeration™

Becauseit is “ soft”, the EZ-USB chip can take on the identities of multiple distinct USB
devices. Thefirst device downloads your 8051 firmware and USB descriptor tables over
the USB cable when the periphera deviceis plugged in. Once downloaded, another
device comes on as atotally different USB peripheral as defined by the downloaded
information. This two-step process, called ReNumeration™, happens instantly when the
deviceis plugged in, with no hint that the initial load step has occurred.

Chapter 5, “Enumeration/ReNumeration” describes this feature in detail, along with other
EZ-USB boot (startup) modes.

1.13 EZ-USB Endpoints

The USB specification defines an endpoint as a source or sink of data. Since USB isa
seria bus, a device endpoint is actually a FIFO which sequentially empties/fills with USB
bytes. The host selects a device endpoint by sending a 4-bit address and 1 direction bit.
Therefore USB can uniquely address 32 endpoints, INO through IN15 and OUTO through
OuUT15.

From the EZ-USB point of view, an endpoint is a buffer full of bytes received or to be
transmitted over the bus. The 8051 reads endpoint data from an OUT buffer, and writes
endpoint data for transmission over USB to an IN buffer.

Four USB endpoint types are defined, Bulk, Control, Interrupt and Isochronous.

1.13.1 EZ-USB Bulk Endpoints

Bulk endpoints are unidirectional—one endpoint address per direction. Therefore
endpoint 2-IN is addressed differently than endpoint 2-OUT. Bulk endpoints use
maximum packet sizes (and therefore buffer sizes) of 8, 16, 32 or 64 bytes. EZ-USB
provides fourteen bulk endpoints, divided into seven IN endpoints (endpoint 1-1N
through 7-IN), and seven OUT endpoints (endpoint 1-OUT through 7-OUT). Each of the
fourteen endpoints has a 64 byte buffer.

Bulk datais available to the 8051 in RAM form, or as FIFO data using a special EZ-USB
Autopointer (Chapter 6, “Bulk Transfers’).
1.13.2 EZ-USB Control Endpoint Zero

Control endpoints transfer mission-critical control information to and from the USB
device. The USB specification requires every USB device to have a default CONTROL
endpoint, endpoint zero. Device enumeration, the process that the host initiates when the

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 12

deviceisfirst plugged in, is conducted over endpoint zero. The host sends all USB
requests over endpoint zero.

Control endpoints are bi-directional, so if you have an endpoint 0 IN CONTROL
endpoint you automatically have an endpoint 0 OUT endpoint. Control endpoints alone
accept SETUP PIDS.

A CONTROL transfer consists of atwo or three stage sequence:

SETUP
DATA (If needed)
HANDSHAKE

Eight bytes of datain the SETUP portion of the CONTROL transfer have specia USB
significance, as defined in Chapter Nine of the USB specification. A USB device must
respond properly to the requests described in this chapter to pass USB compliance testing
(usually referred to as the USB “ Chapter Nine Test”).

Endpoint zero is the only CONTROL endpoint in the EZ-USB chip. The 8051 responds
to device requests issued by the host over endpoint zero. The EZ-USB coreis
significantly enhanced to simplify the 8051 code required to service these requests.
Chapter 7, “Endpoint Zero” provides a detailed roadmap for writing USB Chapter 9
compliant 8051 code.

1.13.3 EZ-USB Interrupt Endpoints

Interrupt endpoints are almost identical to bulk endpoints. Fourteen EZ-USB endpoints
(EP1-EP7, IN and OUT) may be used as interrupt endpoints. Interrupt endpoints have
maximum packet sizes up to 64, and contain a*“polling interval” byte in their descriptor
to tell the host how often to service them. The 8051 transfers data over interrupt
endpoints in exactly the same way as for bulk endpoints. Interrupt endpoints are
described in Chapter 6, “Bulk Transfers’.

1.13.4 EZ-USB Isochronous Endpoints

| sochronous endpoints deliver high bandwidth, time critical data over USB. Isochronous
endpoints are used to stream data to devices such as audio DACs, and from devices such
as cameras and scanners. Time of delivery isthe most critical requirement, and
isochronous endpoints are tailored to this requirement. Once a device has been granted
an isochronous bandwidth slot by the hogt, it is guaranteed to be able to send or receive
its data every frame.

EZ-USB contains sixteen isochronous endpoints, numbered 8-15 (8IN-15IN, and 80UT-

150UT). 1024 bytes of FIFO memory are available to the sixteen endpoints, and may be
divided among them. The EZ-USB chip actually contains 2048 bytes of isochronous

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 13

FIFO memory to provide double-buffering. Using double buffering, the 8051 reads OUT
data from isochronous endpoint FIFOS containing data from the previous frame while the
host writes current frame data into the other buffer. Similarly, the 8051 loads IN data
into isochronous endpoint FIFOS that will be transmitted over USB during the next frame
while the host reads current frame data from the other buffer. At every SOF the USB
FIFOS and 8051 FIFOS switch, or “ping-pong”.

I sochronous transfers are described in Chapter 8.

1.14 Fast Transfer Modes

The following versions of the EZ-USB have afast transfer mode: AN2125SC,
AN2126SC, AN2135SC, AN2136SC, AN2131QC, and AN2141QC. The fast transfer
mode minimizes the transfer time from EZ-USB FIFOS and external memory. In this
mode the EZ-USB core monitors transfers between the 8051 accumulator and internal
FIFOS, and substitutes data from the external data bus for the transfer. The EZ-USB core
also supplies externa FIFO read and write strobes to synchronize the transfers.

Using the fast transfer mode, the 8051 transfers a byte of data between an internal FIFO
and the external bus using asingle 8051 “MOV X" instruction, which takes 2 cycles or
333 nanoseconds. Both Isochronous and Bulk endpoints can use this fast transfer mode.

1.15 Interrupts

The EZ-USB enhanced 8051 adds seven interrupt sources to the standard 8051 interrupt
system. Three of the added interrupts are used internally, and the others are available on
device pins. INT2 isused for all USB interrupts. INT3isused by the I°C interface. A
third interrupt is used for remote wakeup indication.

The EZ-USB core automatically supplies jump vectors (“ Autovectors’) for its USB
interrupts to save the 8051 from having to test bits to determine the source of the
interrupt. Each BULK/CONTROL/INTERRUPT endpoint has its own vector, so when
an endpoint requires service the proper interrupt service routine is automatically invoked.
The 8051 services all isochronous endpoints in response to an SOF (Start Of Frame)
interrupt request. Chapter 9, “EZ-USB Interrupts’ describes the EZ-USB interrupt
system.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 14

1.16 Reset and Power Management

The EZ-USB chip contains four resets:

Power-On Reset (POR)
USB bus reset

8051 reset

USB Disconnect/Re-connect

The functions of the various EZ-USB resets are described in Chapter 10, “EZ-USB
Resets’.

A USB peripheral may be put into alow power state when the host signals a * suspend”
operation. The USB specification states that a bus powered device cannot draw more
than 500 microamps of current from the Vcc wire while in suspend. The EZ-USB chip
contains logic to turn off itsinternal oscillator and enter a*“sleep” state. A special
interrupt, triggered by a wakeup pin or wake-up signaling on the USB bus, starts the
oscillator and interrupts the 8051 to resume operation.

Low power operation is described in Chapter 11, “EZ-USB Power Management”.

1.17 EZ-USB Product Family

The EZ-USB family is available in various pinouts to serve different system requirements
and costs.

PORTA ——» PA4IFWR#
——» PAS/FRD#
ORTB PORTB
AN2xy1 -FORTE, AN2xy1 (PORTE mgxyg
QC [ortc) sC {‘rortc) Qéy ("PORTC)
(80 pin) m> (44pin) (44 pin)
D[7..0 D[7..0

Figure 1-9. EZ-USB Family Members

Figure 1-9 illustrates the basic EZ-USB family options. Referring to the part numbers,
x=1 for RAM-based versions, and x=3 for ROM based versions. The “y” option
indicates the amount of internal memory, equal to 2¥ kilobytes. Part numbers ending in 1
or 5 have isochronous endpoints; part numbers ending in 6 do not.

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 15

1.18 Pin Description

The tables on the following pages describe the EZ-USB pins, both for the 44 pin

packages and the 80 pin package for the entire EZ-USB family.

SCL
WAKEUP#
N/C
PAO/TOout
PA1/Tlout
PA2/OE#
PA3/CS#
GND
PA4/FWR#
PAS5/FRD#
PAG6/RXDO0Oout
PA7/RXD1out
USBD-

GND

USBD+
PSEN#

NN N o] (o] (o (o (o
=

ool [~ [N (NN (N[~

= ES
S o B o<
S E E E
= tZZZ
< [=] fo o O - I I
[ayl =8 O 4 M 0O 0 N A Q
o OB o O oo o o o 00 o0

~ © 1
o o o o
O || |1] |1

e]

@

5]
5]
5
5]

PB3/TxD1

a7
%
s
)
.

PB2/RxD1

PB1/T2EX

PBO/T2
GND

C
PC7/RD#

41
J

~

EZ-USB TRM YV 1.51

H el A Rl R R

80 PQFP
14 x 20 mm

1]

1

2|

ik

14
15
16

B IRIEIETEIRIE

s 2 s 2E I EBER E
>c>c>c> oo [}
® (@]

[=)

(18|

AGND

XIN

[20]
(2]

XOouT

2]

HH
(N
[OF =]

AvCC
VC
GNI

EA

Figure 1-10. 80-pin PQFP Package (AN2131Q and AN2141Q)

Chapter 1. Introducing EZ-USB

w

w

N

F e] e]

Product Models:
AN2131Q
AN2141Q

PC6/WR#
PC5/T1
PC4/TO
Al5

Ala

Al3

Al2
PC3/INT1#
PC2/INTO#
PC1/TxDO
PCO/RxDO
All

Al0

A9

A8

RESET

Page 16

HH
% R &
o) + \ 4 = 2
a [a) (TR (TR Ll
d 2 2 2 2 B £ 3 § E Product Models:
> &))) o o o = 7} %) o *
AN2121S
AN2131S
< < ™ ™ ™ ™ ™ ™
- \
GND 1 O 33 vce
CcLK24 2 32 BKPT
3 31 PB7/T20UT
4 30 PB6/INT6
GND 5 44 P Q F P 29 PBS/INT5#
GND 6 28 PB4/INT4
AGND 7 10 X 10 mm 27 PB3/TxD2
XIN 8 26 PB2/RxD2
xout [9 | [25 | PBUT2EX
AVCC 10 24 PBO/T2
vce 11 23 GND

(12|
(|
14
15|
(16 |
17|
(18 |
(1o |
[20 |
21 |
(22 |

GND
RESET
PCO/RxD0O
PC1/TxD0
PC2/INTO#
PC3/INT1#
PC4/TO
PC5/T1
PC6/WR#
PC7/RD#
VvCC

Figure 1-11. 44-pin PQFP Package (AN2121Sand AN2131S)

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 17

** ps $*
: . . 8 = 5
q c 2 2 & L oF Y, L
d 2322 :3iH: 3 3R Product Models:
AN2125S
AN2126S
< < ™ ™ ™ ™ ™ ™
AN2135S
GND 1 O 33 vce
CLK24 2 32 BKPT
- 44 PQFP w0 o
GND 6 28 D4
Ao [7] 10 x 10 mm 7] o
XIN 8 26 D2
XOuT 9 25 D1
Avce 10 24 DO
vce 11 23 GND

[12]
[[13 |
[14 |
[15]
[16 |
[17 |
[18 |
19 |
[20 |
21|
22 |

GND
RESET
PCO/RxD0O
PC1/TxD0
PC2/INTO#
PC3/INT1#
PC4/TO
PC5/T1
PC6/WR#
PC7/RD#
VvCC

Figure 1-12. 44-pin PQFP Package (AN2125S AN2126S, AN2130S, AN21359)

EZ-USB TRM V 1.51 Chapter 1. Introducing EZ-USB Page 18

2125SC
2126SC
2135SC
2136SC

2121SC
2131SC

2131QC
2141QC

Name

Type

Default

Description

10

10

21

AVCC

Power

N/A

Analog VCC. Thissignal provides power to the
analog section of the chip.

18

AGND

Power

N/A

Analog Ground. Connect to ground with as short
apath as possible.

43

43

1

DISCON#

Output

HI

Disconnect. Thissignal driveslow when the 8051
sets the DISCON bit HI (USBCS.3). When the
DISCON hit isLO, the DISCON# pin either drives
high or floats, depending on the state of the
DISCOE hit (USBCS.2).

41

41

77

USBD-

1/10/Z2

USB D- signal. Connect to the USB D- signal
through a 24 ohm resistor.

42

42

79

USBD+

1/10/Z2

USB D+ signal. Connect to the USB D+ pin
through a 24 ohm resistor.

N/A

N/A

7-12,
15, 16,
26-29,
34-37

AO-A5,
A6, A7
A8-Al1l
A12-A15

Output

0x0000

8051 Addressbus. Thisbusisdriven at al
times. When the 8051 is addressing internal RAM
it reflects the internal address.

24-27
28-31

N/A

48-51,
57-60

DO-D3,
D4-D7

1/10/Z2

8051 Data bus. This bi-directional busis high-
impedance when inactive, input for bus reads, and
output for bus writes. The databusis also used to
transfer data directly to and from internal EZ-USB
FIFOS under control of the FRD# and FWR#
strobes. DO-D7 are active only for external bus
accesses, and are driven low in suspend.

N/A

N/A

80

PSEN#

Output

Program Store Enable. Thisactive-low signa
indicates a code fetch from external memory. Itis
active for program memory fetches above 0x1B40
when the EA pinisLO, or above 0x0000 when the
EA pinisHI.

32

32

61

BKPT

Output

Breakpoint. This pin goes active (high) when the
8051 address bus matches the BPADDRH/L
registers and breakpoints are enabled in the
USBBAYV register (BPEN=1). If the BPPULSE
bit in the USBBAYV register isHI, this signal
pulses high for eight 24 Mhz clocks. If the
BPPUL SE hit isLO, the signal remains high until
the 8051 clears the BREAK bit (by writing 1 to it)
inthe USBBAV register.

13

13

25

RESET

Input

N/A

Active high Reset. Resets the 8051 and the USB
SIE. Thispinisnormally tied to ground through a
10K resistor, and to VCC through a 1 uF capacitor.

N/A

N/A

24

Input

N/A

External Access. If thissigna isactive (high),
the 8051 fetches code from external memory
instead of the internal program RAM. If EA=0,
the 8051 fetches code from 0x1B40 and up
(AN2131).

19

XIN

Input

N/A

Crystal input. Connect thissignal to a12Mhz
series resonant, fundamental mode crystal and 22-
33 pF capacitor to GND.

EZ-USB TRM YV 1.51

Chapter 1. Introducing EZ-USB Page 19

2125SC
2126SC
2135SC
2136SC

2121SC
2131SC

2131QC
2141QC

Name

Type

Default

Description

20

XOUT

Output

N/A

Crystal output. Connect thissignal to a12Mhz
series resonant, fundamental mode crystal and 22-
33 pF capacitor to GND.

N/A

N/A

68

PAO or
TOOUT

/10

(PAO)

Multiplexed pin whose function is selected by the
“TOOUT” bit of the PORTACFG register. If
TOOUT=0, the pin is the bi-directional 1/0 port bit
PAO. If TOOUT=1 the pin is the active-high
TOOUT signal from 8051 Timer-counterO.

TOOUT outputs a high level for one CLK 24 clock
cycle when Timer O overflows. If Timer Ois
operated in mode 3 (two separate timer/counters),
TOOUT is active when the low byte timer/counter
overflows.

N/A

N/A

69

PA1 or
T10UT

/10

(PAL)

Multiplexed pin whose function is selected by the
“T10UT" bit of the PORTACFG register. If
T10UT=0, the pinis the bi-directional 1/0 port bit
PA1. If TIOUT=1 the pin is the active-high
T1O0UT signal from 8051 Timer-counterl.

T10UT outputs a high level for one CLK 24 clock
cycle when Timerl overflows. If Timer 1is
operated in mode 3 (two separate timer/counters),
T1O0UT is active when the low byte timer/counter
overflows.

N/A

N/A

70

PA2 or
OE#

/10

(PA2)

Multiplexed pin whose function is selected by the
“OE” hit of the PORTACFG register. If OE=0,
the pin isthe bi-directional 1/O port pin PA2. If
OE=1 the pin is an active-low output enable for
external memory. If the OE# pin is used, it should
be externally pulled up to VCC to insure that the
write strobe is inactive (high) at power-on.

N/A

N/A

71

PA3 or
CSH

/10

(PA3)

Multiplexed pin whose function is selected by the
“CS’ bit of the PORTACFG register. If CS=0, the
pin isthe bi-directional 1/0 port pin PA3. If CS=1
the pin is an active-low chip select for externa
memory. If the CS# pinisused, it should be
externally pulled up to VCC to insure that the
write strobe is inactive (high) at power-on.

39

39

73

PA4 or
FWR#

/10

(PA4)

Multiplexed pin whose function is selected by the
“FWR” (Fast Write) bit of the PORTACFG
register. If FWR=0, the pin is the bi-directional
1/O port pin PA4. If FWR=1 the pin is the write
strobe for an external FIFO. If the FWR# pinis
used, it should be externally pulled up to VCC to
insure that the write strobe is inactive at power-on.

EZ-USB TRM YV 1.51

Chapter 1. Introducing EZ-USB

Page 20

2125SC
2126SC
2135SC
2136SC

2121SC
2131SC

2131QC
2141QC

Name

Type

Default

Description

40

40

74

PAS5 or
FRD#

/10

(PA5)

Multiplexed pin whose function is selected by the
“FRD” (Fast Read) bit of the PORTACFG
register. If FRD=0, the pin isthe bi-directional
[/O port pin PAS5. If FRD=1 the pin isthe read
strobe for an external FIFO. If the FRD# pinis
used, it should be externally pulled up to VCC to
insure that the write strobe is inactive (high) at
power-on.

N/A

N/A

75

PAG or
RXDOOUT

/10

(PAB)

Multiplexed pin whose function is selected by the
“RXDOOUT” hit of the PORTACFG register. If
RXDOOUT=0 (default), the pin is the bi-
directiona 1/0 port bit PA6. If RXDOOUT=1 the
pin isthe active-high RXDOOUT signal from 8051
UARTO.

If RXDOOUT is selected and UARTO isin mode
0, this pin provides the output data for UARTO
only whenitisin sync mode. Otherwiseitisal.

N/A

N/A

76

PAY or
RXD10OUT

/10

(PA7)

Multiplexed pin whose function is selected by the
“RXD10OUT” hit of the PORTACFG register. If
RXD10OUT=0 (default), the pin is the bi-
directiona 1/0 port bit PA7. If RXD10OUT =1 the
pin isthe active-high RXD1OUT signal from 8051
UARTL.

When RXD1OUT is selected and UART1 isin
mode O, this pin provides the output data for
UART1 only when it isin sync mode. In modes 1,
2and 3, thispinisal.

N/A

24

PBO or
T2

/10

(PBO)

Multiplexed pin whose function is selected by the
“T2" bit of the PORTBCFG register. If T2=0, the
pin isthe bi-directional 1/O port bit PBO. If T2=1
the pin is the active-high T2 signal from 8051

Timer2, which provides the input to Timer2 when
C/T2=1. When C/T2=0, Timer2 does not use this

pin.

N/A

25

45

PB1 or
T2EX

/10

(PB1)

Multiplexed pin whose function is selected by the
“T2EX" bit of the PORTBCFG register. If
T2EX=0, the pin is the bi-directional 1/O port bit
PB1. If T2EX=1the pinisthe active-high T2EX
signal from 8051 Timer2.

T2EX — Input pin that reloads timer 2 on itsfalling
edge. Only active if the EXEN2 bitissetin
T2CON.

N/A

26

46

PB2 or
RXD1

/10

(PB2)

Multiplexed pin whose function is selected by the
“RXD1" hit of the PORTBCFG regigter. If
RXD1=0, the pin is the bi-directional 1/O port bit
PB2. If RXD1=1 the pinisthe active-high RXD1
input signal for 8051 UART1, which provides data
to the UART in all modes.

EZ-USB TRM YV 1.51

Chapter 1. Introducing EZ-USB

Page 21

21258C | 2121SC
2126SC | 2131SC

2135SC
2136SC

2131QC
2141QC

Name

Type

Default

Description

N/A

27

47

PB3or
TXD1

/10

(PB3)

Multiplexed pin whose function is selected by the
“TXD1" bit of the PORTBCFG register. If
TXD1=0, the pin is the bi-directional /O port bit
PB3. If TXD1=1 the pin isthe active-high TXD1
output pin for 8051 UART1, which provides the
output clock in sync mode, and the output datain
async mode.

N/A

28

52

PB4 or
INT4

/10

(PB4)

Multiplexed pin whose function is selected by the
“INT4" bit of the PORTBCFG register. If
INT4=0, the pin is the bi-directional /O port bit
PB4. If INT4=1 the pin isthe 8051 INT4 interrupt
request signal. TheINT4 pin is edge-sensitive,
active high.

N/A

29

53

PB5 or
INTS#

/10

(PBS)

Multiplexed pin whose function is selected by the
“INTS" bit of the PORTBCFG register. If
INT5=0, the pin is the bi-directional /O port bit
PB5. If INT5=1 the pin isthe INT5# interrupt
request signal. The INT5# pin is edge-sensitive,
active low.

N/A

30

PB6 or
INT6

/10

(PB6)

Multiplexed pin whose function is selected by the
“INT6" bit of the PORTBCFG register. If
INT6=0, the pin is the bi-directional /O port bit
PB6. If INT6=1 the pin isthe INT6 interrupt
request signal. TheINT6 pin is edge-sensitive,
active high.

N/A

31

55

PB7 or
T20UT

/10

(PB7)

Multiplexed pin whose function is selected by the
“T20UT” bit of the PORTBCFG register. If
T20UT=0, the pin is the bi-directional 1/0 port bit
PB7. If T20UT=1 the pinisthe active-high
T20UT signal from 8051 Timer2.

T20UT is active (high) for one clock cycle when
Timer/Counter 2 overflows.

14

14

30

PCO or
RXDO

/10

(PCO)

Multiplexed pin whose function is selected by the
“RXDO0" hit of the PORTCCFG register. If
RXDO0=0, the pin is the bi-directional 1/O port bit
PCO. If RXDO0=1 the pinisthe active-high RXDO
from 8051 UARTO, which provides data to the
UART in all modes.

15

15

31

PClor
TXDO

/10

(PCI)

Multiplexed pin whose function is selected by the
“TXDOQ" bit of the PORTCCFG register. If
TXDO0=0, the pin is the bi-directional 1/O port bit
PC1. If TXDO0=1 the pin isthe active-high TXDO
signal for 8051 UARTO, which provides the output
clock in sync mode, and the output data in async
mode.

EZ-USB TRM YV 1.51

Chapter 1. Introducing EZ-USB

Page 22

2125SC
2126SC
2135SC
2136SC

2121SC
2131SC

2131QC
2141QC

Name

Type

Default

Description

16

16

32

PC2 or
INTO#

/10

(PC2)

Multiplexed pin whose function is selected by the
“INTO" bit of the PORTCCFG register. If
INTO=0, the pin is the bi-directional /O port bit
PC2. If INTO=1 the pin isthe active-low 8051
INTO interrupt input signal, which is either edge
triggered (ITO = 1) or level triggered (ITO = 0).

17

17

33

PC3or
INT1#

/10

(PC3)

Multiplexed pin whose function is selected by the
“INTL” bit of the PORTCCFG register. If
INT21=0, the pin is the bi-directional /O port bit
PC3. If INT1=1 the pin isthe active-low 8051
INTZ interrupt input signal, which is either edge
triggered (IT1 = 1) or level triggered (IT1 = Q).

18

18

38

PC4 or
TO

/10

(PC4)

Multiplexed pin whose function is selected by the
“TO” bit of the PORTCCFG register. If TO=0, the
pin isthe bi-directional 1/O port bit PC4. If TO=1
the pin is the active-high TO signal for 8051
Timer0O, which provides the input to TimerO when
C/TOis1. When C/TOis0, TimerO does not use
this bit.

19

19

39

PC5 or
T1

/10

(PCS)

Multiplexed pin whose function is selected by the
“T1” bit of the PORTCCFG register. If T1=0, the
pin isthe bi-directional 1/O port bit PC5. If T1=1
the pin is the active-high T1 signal from 8051
Timerl, which provides the input to Timerl when
C/T1is1. When C/TOis0, Timerl does not use
this bit.

20

20

40

PC6 or
WR#

/10

(PC6)

Multiplexed pin whose function is selected by the
“WR” bit of the PORTCCFG register. If WR=0,
the pin is the bi-directional 1/O port bit PC6. If
WR=1 the pin is the active-low write signal for
external memory. If the WR# signal isused, it
should be externally pulled up to VCC to insure
that the write strobe is inactive at power-on.

21

21

41

PC7 or
RD#

/10

(PC7)

Multiplexed pin whose function is selected by the
“RD” bit of the PORTCCFG register. If RD=0,
the pin is the bi-directional 1/O port bit PC7. If
RD=1 the pinisthe active-low read signal for
external memory. If the RD# signal is used, it
should be externally pulled up to VCC to insure
that the read strobe is inactive at power-on.

CLK?24

Output

24Mhz clock, phase locked to the 12Mhz input
clock. Output isdisabled by setting the
OUTCLKEN bit = 0in the CPUCS register.

37

37

66

WAKEUP#

Input

N/A

USB Wakeup. If the 8051 isin suspend, ahigh to
low edge on this pin starts up the oscillator and
interrupts the 8051 to allow it to exit the suspend
mode. Holding WAKEUP# LOW inhibits the EZ-
USB chip from suspending.

36

36

65

SCL

oD

12C Clock. Connect to VCC with a2.2K resistor.

35

35

SDA

oD

12C Data. Connect to VCC with a2.2K resistor.

EZ-USB TRM YV 1.51

Chapter 1. Introducing EZ-USB

Page 23

2125SC | 2121SC | 2131QC | Name Type | Default | Description
2126SC | 2131SC | 2141QC
2135SC
2136SC
11,22, | 11,22, | 2,22,42, | VCC N/A VCC. 3.3V power source.
33,44 33,44 62
1,34, | 1,34, 3,5,6, | GND N/A Ground. Note: On the 80-pin package, pins
56,12, | 56,12, | 13, 14, 5,6,13,14 and 72 are test pins that must be
23,34, | 23,34, 17, 23, grounded for normal operation. Driving pin 72
38 38 43, 56, high floats all functional pins for automated board
63, 72, test. The corresponding pins on the 44-pin
78 package are pins 3,4,5, 6 and 38. Driving pin 38
high floats all functional pins for automated board
test.
N/A N/A 67 NC N/A This pin must be |eft unconnected.

EZ-USB TRM YV 1.51

Chapter 1. Introducing EZ-USB

Page 24

2 EZ-USB CPU

2.1 Introduction

The EZ-USB built-in microprocessor, an enhanced 8051 core, is fully described in
Appendices A-C. This chapter introduces the processor, its interface to the EZ-USB
core, and describes architectural differences from a standard 8051.

2.2 8051 Enhancements

The enhanced 8051 core uses the standard 8051 instruction set. Instructions execute
faster than with the standard 8051 due to two features:

Wasted bus cycles are eliminated. A bus cycle uses 4 clocks, as compared to
12 clocks with the standard 8051.

The 8051 runs at 24 MHz.

In addition to the speed improvement, the enhanced 8051 core also includes architectural
enhancements:

A second data pointer.

A second UART.

A third, 16-bit timer (TIMER2).

A high speed memory interface with a non-multiplexed 16-bit address bus.
Eight additiona interrupts (INT2-INT6, PFI, T2, UARTL1).

Variable length MOV X timing to accommodate fast/slow RAM peripherals.
3.3 Volt operation.

Nog,rwWDN R

2.3 EZ-USB Enhancements \

The EZ-USB chip provides additional enhancements outside the 8051. These include:

Fast “DMA-like” externa transfers (Autopointer, Fast Transfer Mode)
Vectored USB interrupts (Autovector)

Separate buffers for SETUP and DATA portions of a CONTROL transfer.
Breakpoint Facility

EZ-USB TRM YV 1.51 Chapter 2. EZ-USB CPU Page 25

24 EZ-USB Register Interface

The 8051 communicates with the EZ-USB core through a set of memory mapped
registers. These registers are grouped as follows:

Endpoint buffers and FIFOS
8051 control

O Ports

Fast Transfer

12C Controller

Interrupts

USB functions

These registers and their functions are described throughout this manual. A full
description of every register and bit appears in Chapter 12, “EZ-USB Registers’.

25 EZ-USB Internal RAM

FF Upper 128

bytes
80 Indirect Addr

TF

SFR Space
Direct Addr

Lower 128
bytes
00 Direct Addr

Figure 2-1. 8051 Registers

Like the standard 8051, the EZ-USB 8051 core contains 128 bytes of register RAM at 00-
7F, and a partially populated SFR register space at 80-FF. An additional 128 indirectly
addressed registers (sometimes called “IDATA”) are also available at 80-FF.

All internal EZ-USB RAM, which includes program/data memory, bulk endpoint buffer
memory, and the EZ-USB register set, is addressed as “add-on” 8051 memory. The 8051
reads or writes these bytes as data using the MOV X (“move external”) instruction. Even
though the MOV X instruction implies external memory, the EZ-USB RAM and register
set is actually inside the EZ-USB chip. External memory attached to the AN2131Q
address and data busses is also accessed by the MOV X instruction. The EZ-USB core
encodes its memory strobe and select signals (RD#, WR#, CS# and OE#) to eliminate the
need for external logic to separate the internal and external memory spaces.

EZ-USB TRM YV 1.51 Chapter 2. EZ-USB CPU Page 26

2.6 10 Ports

A standard 8051 communicates with its 10 ports 0-3 through four Special Function
Registers (SFR). Standard 8051 10 pins are “quasi-bidirectional”, with weak pullups that
briefly drive high only when the pin makes a zero to one transition.

The EZ-USB coreimplements|O portsdifferently than a standard 8051, as
described in Chapter 4, “EZ-USB Input/Output”. Instead of using the 8051 1O ports and
SFR’s, the EZ-USB core implements aflexible 10 system that is controlled via the EZ-
USB register set. Each EZ-USB 10 pin functions identically, having the following
resources:

An output latch. Used when the pin is an output port.

A bit that indicates the state of the 1O pin, regardless of its configuration (input or
output).

An output enable bit that causes the 10 pin to be driven from the output latch.

An alternate function bit that determines whether the pin is general 10 or a specia
8051 or EZ-USB function.

The SFRs associated with 8051 ports 0-3 are not implemented in EZ-USB. These SFR
addresses include PO (0x80), P1 (0x90), P2 (0xA0) and P3 (0xB0). NOTE: Because the
address bus is non-multiplexed, the “MOV X @RO/R1” instructions are not supported.

2.7 Interrupts

All standard 8051 interrupts are supported in the enhanced 8051 core. Table 2-1 shows
the existing and added 8051 interrupts, and indicates how the added ones are used.

Table 2-1. EZ-USB Interrupts

Standard Enhanced | Used As

8051 8051

Interrupts | Interrupts

INTO Device Pin INTO#

INT1 Device Pin INT1#

Timer O Internal, Timer O

Timer 1 Internal, Timer 1

Tx0 & Rx0 Internal, UARTO
INT2 Internal, USB
INT3 Internal, 1°C Controller
INT4 Device Pin, PB4/INT4
INT5 Device Pin, PB5/INT5#
INT6 Device Pin, PB6/INT6
PFI Device Pin, USB WAKEUP#
Tx1 & Rx1 | Internal, UART1
Timer 2 Internal, Timer 2

EZ-USB TRM YV 1.51 Chapter 2. EZ-USB CPU Page 27

The EZ-USB chip uses 8051 INT2 for 21 different USB interrupts: sixteen bulk
endpoints plus SOF, Suspend, SETUP Data, SETUP Token and USB Bus Reset. To help
the 8051 determine which interrupt is active, the EZ-USB core provides a feature called
Autovectoring. The core inserts an address byte into the low byte of the 3 byte jump
instruction found at the 8051 INT2 vector address. This second level of vectoring
automatically transfers control to the appropriate USB ISR. The Autovector mechanism,
aswell asthe EZ-USB interrupt system is the subject of Chapter 9, “EZ-USB Interrupts’.

2.8 Power Control

The EZ-USB core implements a power-down mode that allows it to be used in USB bus
powered devices that must draw no more than 500 microamps when suspended. Power
control is accomplished using a combination of 8051 and EZ-USB core resources. The
mechanism by which EZ-USB powers down for suspend, and then re-powers to resume
operation, is described in detail in Chapter 11, “EZ-USB Power Management”.

A suspend operation uses three 8051 resources, the “idle” mode and two interrupts.
Many enhanced 8051 architectures provide power control similar (or identical) to the EZ-
USB enhanced 8051 core.

A USB suspend operation isindicated by alack of bus activity for 3 milliseconds. The
EZ-USB core detects this, and asserts an interrupt request via the USB interrupt (8051
INT2). The ISR (Interrupt Service Routine) turns off external sub-systems that draw
power. When ready to suspend operation, the 8051 sets an SFR bit, PCON.O. This bit
causes the 8051 to suspend, waiting for an interrupt.

When the 8051 sets PCON.0, a control signal from the 8051 to the EZ-USB core causes
the core to shut down the 12 MHz oscillator and internal PLL. This stops all internal
clocks to allow the EZ-USB core and 8051 to enter a very low power mode.

The suspended EZ-USB chip can be awakened two ways: USB bus activity may resume,
or an EZ-USB pin (WAKEUP#) can be asserted to activate a USB “Remote Wakeup”.
Either event triggers the following chain of events:

1. The EZ-USB corere-startsthe 12 MHz oscillator and PLL, and waits for the clocks to
stabilize.

2. The EZ-USB core asserts a special, high-priority 8051 interrupt to signal a ‘resume’
interrupt.

3. The 8051 vectorsto the resume ISR, and upon completion resumes executing code at
the instruction following the instruction that set the PCON.O bit to 1.

EZ-USB TRM YV 1.51 Chapter 2. EZ-USB CPU Page 28

29 SFR's

The EZ-USB family was designed to keep 8051 coding as standard as possible, to allow
easy integration of existing 8051 software development tools. The added 8051 SFR

registers and bits are summarized in Table 2-2.

Table 2-2. Added SFR Registers and Bits

8051 Enhancement | SFR Addr | Function

Dual Data Pointers | DPLO 0x82 | Data Pointer O Low Addr
DPHO 0x83 | DataPointer 0 High Addr
DPL1 0x84 | Data Pointer 1 Low Addr
DPH1 0x85 | DataPointer 1 High Addr
DPS 0x86 | Data Pointer Select (LSB)

Timer 2 T2CON.6-7 | OxC8 | Timer 2 Control

RCAP2L OxCA | T2 Capture/Reload Value L

RCAP2H OxCB | T2 Capture/Reload Value H

T2L O0xCC | T2 Count L

T2H 0xCd | T2 Count H

IE.5 O0xA8 | ET2-Enable T2 Interrupt bit

IP.5 0xB8 | PT2-T2 Interrupt Priority Control
UART1 SCON1.0-1 | OxCO | Seria Port 1 Control

SBUF1 O0xC1 | Serial Port 1 Data

IE.6 0xA8 | ES1-SIO1 Interrupt Enable bit

IP.6 0xB8 | PS1-SIO1 Interrupt Priority Control

EICON.7 0xD8 | SMOD1-SI01 Baud Rate Doubler
Interrupts
INT2-INT5 EXIF 0x91 | INT2-INTS5 Interrupt flags

EIE OXE8 | INT2-INT5 Interrupt enables

EIP.0-3 OxF8 | INT2-INT5 Interrupt Priority Control
INT6 EICON.3 0xD8 | INT6 Interrupt flag

EIE.4 OXE8 | INT6 Interrupt enable

EIP.4 OxF8 | INT6 Interrupt Priority Control
WAKEUP# EICON.4 0xD8 | WAKEUP# interrupt flag

EICON.5 0xD8 | WAKEUP# interrupt enable
Idle Mode PCON.0 0x87 | EZ-USB Power Down (Suspend)

EZ-USB TRM V 1.51 Chapter 2. EZ-USB CPU

Page 29

2.10 Internal bus

Members of the EZ-USB family that provide pins to expand 8051 memory provide
separate non-multiplexed 16-bit address and 8-bit data busses. This differs from the
standard 8051, which multiplexes eight device pins between three sources: 10 port O, the
external data bus, and the low byte of the address bus. A standard 8051 system with
external memory requires a de-multiplexing address latch, strobed by the 8051 ALE
(Address Latch Enable) pin. The external latch is not required by the non-multiplexed
EZ-USB chip, and no ALE signal is needed. In addition to eliminating the customary
external latch, the non-multiplexed bus saves one cycle per memory fetch cycle, further
improving 8051 performance.

A standard 8051 user must choose between using Port 0 as a memory expansion port or
an 10 port. The AN2131Q provides a separate 10 system with its own control registers
(in externa memory space), and provides the IO port signals on dedicated (not shared)
pins. This allows the external data bus to be used to expand memory without sacrificing
1O pins.

The 8051 is the sole master of the memory expansion bus. It provides read and write
signals to external memory. The address bus is output-only.

A specid “fast transfer” mode gives the EZ-USB family the capability to transfer data to

and from external memory over the expansion bus using asingle ‘movx’ instruction,
which takes only two cycles. (8 clocks).

EZ-USB TRM YV 1.51 Chapter 2. EZ-USB CPU Page 30

211 RESET

The internal 8051 RESET signal is not directly controlled by the EZ-USB RESET pin.
Instead, it is controlled by an EZ-USB register bit accessible to the USB host. When the
EZ-USB chip is powered, the 8051 is held in reset. Using the default Anchor USB
device (enumerated by the Anchor core), the host downloads code into RAM. Finadly,
the host clears an EZ-USB register bit that takes the 8051 out of reset.

The EZ-USB family also operates with externa non-volatile memory, in which case the

8051 exits the reset state automatically at power-on. The various EZ-USB resets and
their effects are described in Chapter 10, “EZ-USB Resets’.

EZ-USB TRM YV 1.51 Chapter 2. EZ-USB CPU Page 31

3 EZ-USB Memory

3.1 Introduction

EZ-USB devices divides RAM into two regions, one for code and data, and the other for
USB buffers and control registers.

7FFF

Registers/Bulk Buffers
7B40

USB Control Registers | 1FFF/7FFF
(192 bytes) 1F40/7F40
1F3F/7F3F
2P T Bata (ROMVR) RAM 16 x 64-byte
2000 ! If ISODISAB=1 : Bulk Endpoint Buffers
Lo-mmmm e m e = = = (1024 bytes)
1FFF
Registers/Bulk Buffers 1B40/7B40

1B40 /

1B3F

Data (RD/WR) RAM
Code(PSEN) RAM if
EA=0
(6976 bytes)

0000

Figure 3-1. EZ-USB 8K Memory Map. Addresses arein Hexadecimal

3.2 8051 Memory

Figure 3-1 illustrates the two internal EZ-USB RAM regions. 6976 bytes of general-
purpose RAM occupy addresses 0x0000-0x1B3F. This RAM isloadable by the EZ-USB
core or 1°C bus EEPROM, and contains 8051 code and data.

The EZ-USB EA (External Access) pin controls where the bottom segment of code
(PSEN) memory is located—inside (EA=0) or outside (EA=1) the EZ-USB chip. If the
EA (External Access) pinistied low, the EZ-USB core internally OR’ s the two 8051 read
signals PSEN and RD for this region, so that code and data share the 0x0000-0x1B3F
memory space. |F EA=1, al code (PSEN) memory is external.

EZ-USB TRM V 1.51 Chapter 3. EZ-USB Memory Page 32

About 8051 Memory Spaces

The 8051 partitions its memory spaces into code memory and data memory. The 8051
reads code memory using the signal PSEN# (Program Store Enable), reads data memory
using the signal RD# (Data Read) and writes data memory using the signal WR# (Data
Write). The 8051 MOV X (move external) instruction generates RD# or WR# strobes.

PSEN# is a dedicated pin, while the RD# and WR# signals share pins with two 1O port
signals: PC7/RD and PC6/WR. Therefore if expanded memory is used the port pins PC7
and PC6 are not available to the system.

1024 bytes of RAM at 0x7B40-0x7F3F implement the sixteen bulk endpoint buffers. 192
additional bytes at Ox7F40-0x7FFF contain the USB control registers. The 8051 reads
and writes this memory using the MOV X (move externa) instruction. Inthe 8K RAM
EZ-USB version, the 1024 bulk endpoint buffer bytes at 0x7B40-0x7F3F also appear at
0x1B40-0x1F3F. Thisaliasing alows unused bulk endpoint buffer memory to be added
contiguously to the data memory, asillustrated in Figure 3-2. The memory space at
O0x1F40-0x 1FFF should not be used.

Even though the 8051 can access EZ-USB endpoint buffers at either 0x1B40 or 0x7B40,
the firmware should be written to access this memory only at 0x7B40-0x7FFF to
maintain compatibility with future versions of EZ-USB that contain more than 8
kilobytes of RAM. Future versions will have the bulk buffer space at Ox7B40-0x7F3F
only.

1F40

1F00 EPOIN
1ECO EPOOUT
1E80 EP1IN
1E40 EP10UT
1E00 EP2IN
1DC0 EP20UT
1080 EP3IN
1D40 EP30UT
1D00 EP4IN
1CQ0 EP40UT
1C80 EP5IN
1C40 EP50UT
1C00 EP6IN
1BCO EPO6UT
1B80 EP7IN
1B40 EPO70UT
1B3F
Code/Data
RAM
0000

Figure 3-2. Unused bulk endpoint buffers (shaded) used as data memory

In the example shown in Figure 3-2, only endpoints O-IN through 3-IN are used for the
USB function, so the data RAM (shaded) can be extended to Ox1D7F.

EZ-USB TRM V 1.51 Chapter 3. EZ-USB Memory Page 33

If an application uses none of the sixteen EZ-USB isochronous endpoints, the 8051 can
set the ISODISAB bit in the ISOCTL register to disable all sixteen isochronous
endpoints, and make the 2 Kilobytes of isochronous FIFO RAM available as 8051 data
RAM at 0x2000-0x27FF.

Setting ISODISAB=1 isan “al or nothing” choice, as all sixteen isochronous endpoints
are disabled. An application that sets this bit must never attempt to transfer data over an
isochronous endpoint.

The memory map figures in the remainder of this chapter assume that 1SODISAB=0, the
default (and normal) case.

EZ-USB TRM V 1.51 Chapter 3. EZ-USB Memory Page 34

3.3 Expanding EZ-USB Memory

The 80 pin EZ-USB package provides a 16-bit address bus, an 8-bit data bus, and
memory control signals PSEN#, RD# and WR#. These signals are used to expand EZ-
USB memory.

Inside EZ-USB Outside EZ-USB

FFFF

External

Data
Memory
(RD,WR)
External
Code

o000 —— oy
7B40 Registers(RD,WR) (Note 1)

External

Data

Memory

(RD, WR)
2000
1FFF
1F3F Unused Bulk Buffers

ode ata
(Note 2)

0000 (PSEN,RD,WR)

Note 1: OK to populate data memory here--RD#, WR#, CS# and OE# pins are inactive.
Note 2: OK to populate code memory here--no PSEN# strobe is generated.

Figure 3-3. EZ-USB Memory Map with EA=0

Figure 3-3 shows that when EA=0, the code/data memory isinternal at 0x0000-0x1B40.
External code memory can be added from 0x0000-0OxFFFF, but it appears in the memory
map only at 0x1B40-OxFFFF. Addressing external code memory at 0x0000-0x1B3F
when EA=0 causes the EZ-USB core to inhibit the #PSEN strobe. This alows program
memory to be added from 0x0000-OxFFFF without requiring decoding to disable it
between 0x0000 and Ox1B3F.

The internal block at 0x7B40-0x7FFF (labeled “ Registers’) contains the bulk buffer
memory and EZ-USB control registers. As previously mentioned, they are aliased at
0x1B40-0x1FFF to allow adding unused bulk buffer RAM to general-purpose memory.
8051 code should access this memory only at the Ox7B40-0x7BFF addresses. External
RAM may be added from 0x0000 to OxFFFF, but the regions shown by Note 1 are

EZ-USB TRM V 1.51 Chapter 3. EZ-USB Memory Page 35

ignored; no external strobes or select signals are generated when the 8051 executes a
MOV X instruction that addresses these regions.

3.4 CS#and OE# Signals

The EZ-USB core automatically gates the standard 8051 RD# and WR# signals to
exclude selection of external memory that exists internal to the EZ-USB part. The
PSEN# signal is also available on a pin for connection to external code memory.

Some 8051 systems implement external memory that is used as both data and program
memory. These systems must logically OR the PSEN# and RD# signals to qualify the
chip enable and output enable signals of the external memory. To save thislogic, the EZ-
USB core provides two additional control signals, CS# and OE#. The equations for these
signals are as follows:

CS# = RD# or WR# or PSEN#
OE# = RD# or PSEN#

Since the RD#, WR# and PSEN# signals are already qualified by the addresses allocated
to external memory, these strobes are active only when external memory is accessed.

EZ-USB TRM V 1.51 Chapter 3. EZ-USB Memory Page 36

Inside EZ-USB Outside EZ-USB
FFFF
External
Data
Memory
(RD,WR)
External
8000 Niﬁi;y
Registers(RD,WR Note 1
7B40 gisters() | () (PSEN)
External
Data
Memory
(RD, WR)
2000
1FFF
1F3F Unused Bulk Buffers
1B40 (RD,WR) (Note 1)
Data (RD,WR)
0000

Note 1: OK to populate data memory here--RD#, WR#, CS# and OE# are inactive.

Figure 3-4. EZ-USB Memory Map with EA=1

When EA=1 (Figure 3-4), al code (PSEN) memory is external. All internal EZ-USB
RAM isdatamemory. Thisgivesthe user over 6 Kilobytes of genera-purpose RAM,
accessible by the ‘movx’ instruction.

NOTE:

Figure 3-3 and Figure 3-4 assume that the EZ-USB chip uses isochronous endpoints, and
therefore that the ISODISAB bit (ISOCTL.0) isLO. If ISODISAB=1, additional data
RAM appears internally at 0x2000-0x27FF, and the RD#, WR#, CS# and OE# signals are
modified to exclude this memory space from external data memory.

EZ-USB TRM V 1.51 Chapter 3. EZ-USB Memory Page 37

3.5 EZ-USB ROM Versions

The EZ-USB 8K Masked ROM and 32K Masked ROM memory maps are shown in
Figure 3-5 and Figure 3-6.

Inside EZ-USB Outside EZ-USB
FFFF
External
Data
Memory
(RD,WR)
External
Code
Memory
8000 . (PSEN)
Registers(RD,WR) (Note 1)
7B40
External
Data
Memory
(RD, WR)
2000
Internal Code
8?2(; Memory(PSEN) (Note 2)
0000 Data (RD,WR) | (Note 1)

Note 1: OK to populate data memory here, but no RD# or WR# strobes are generated.

Note 2: OK to populate code memory here, but no PSEN# strobe is generated.

Figure 3-5. 8K ROM, 2K RAM version

EZ-USB ROM versions contain program memory starting at 0x0000. In these versions,
the interna RAM is implemented as data-only memory.

Code for this ROM version can be developed and tested using the AN2131Q with an
externa code memory (EA=1, Figure 3-4). Aslong asthe 8051 limitsinterna RAM
accessto 0x0000-0x07FF and accesses the EZ-USB registers and bulk data at 0x7B40-
OX7FFF, the code in the externa memory will be the identical image of the code that will
ultimately be internal at 0x0000-0x1FFF in the ROM version.

EZ-USB TRM V 1.51 Chapter 3. EZ-USB Memory Page 38

Inside EZ-USB

Outside EZ-USB

FFFF
External External
Data Code
Memory Memory
(RD,WR) (PSEN)
8000
7FFE Registers(RD,WR) (Note 1)
7B40
External
Internal Code Data
Memory(PSEN) Memory (Note 2)
(RD, WR)
1000
OFFF
Data (RD,WR) (Note 1)
0000

Note 1: OK to populate data memory here, but no RD# or WR# strobes are generated.

Note 2: OK to populate code memory here, but no PSEN# strobe is generated.

Figure 3-6. 32K ROM, 4K RAM version

The EZ-USB 32K ROM version contains program memory from 0x0000 through

Ox7FFF, and data memory from 0x0000 through OxOFFF.

Code for this ROM version can be developed and tested using the AN2131Q with an
externa code memory (EA=1, Figure 3-4). Aslong asthe 8051 limitsinternad RAM
access to 0x0000-0x0OFFF and accesses the EZ-USB registers and bulk data at Ox7B40-
OX7FFF, the code in the externa memory will be the identical image of the code that will
ultimately be internal at 0x0000-0x7FFF in the ROM version.

EZ-USB TRM YV 1.51

Chapter 3. EZ-USB Memory

Page 39

4 EZ-USB Input/Output

4.1 Introduction

The EZ-USB chip provides two input-output systems:

A set of programmable 10 pins
A programmable 12C Controller

This chapter begins with a description of the programmable 1O pins, and shows how they
are shared by a variety of 8051 and EZ-USB alternate functions such as UART, timer and
interrupt signals.

The I?C controller uses the SCL and SDA pins, and performs two functions:

General purpose 8051 use
Boot loading from an EEPROM

This chapter describes both the programming information for the 8051 1°C interface, and
the operating details of the 1°C boot loader. The role of the boot loader is described in
Chapter 5, “Enumeration/ReNumeration™”

4.2 10 Ports

o]

ouT reg

PINS I

Figure 4-1. EZ-USB Input/Output Pin

The EZ-USB family implements its IO ports using memory-mapped registers. Thisisin
contrast to a standard 8051, which uses SFR bits for input/output.

Figure 4-1 shows the basic structure of an EZ-USB 10 pin. Twenty-four 10 pins are
grouped into three 8-bit ports named PORTA, PORTB and PORTC. The AN2131Q has
all three ports, while the AN2131S has PORTB, PORTC, and two PORTA bits. The
8051 accesses | O pins using the three control bits shown in Figure 4-1: OE, OUT and

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 40

PINS. The OUT bit writes output data to aregister, the OE bit turns on the output buffer,
and the PINS bit indicates the state of the pin.

To configure apin as an input, the 8051 sets OE=0 to turn off the output buffer. To

configure a pin as an output, the 8051 sets OE=1 to turn on the output buffer, and writes
datato the OUT register. The PINS it reflects the actual pin value regardless of the

value of OE.

A fourth control bit (in PORTACFG, PORTBCFG, PORTCCFG registers) determines
whether a port pin is general purpose Input/Output as shown in Figure 4-1, or connected
to an alternate 8051 or EZ-USB function. Table 4-1 lists the alternate functions available

on the 1O pins. Figure 4-4 shows the registers and bits associated with the 1O ports.

Table 4-1. 10 pin functions for PORTXCFG=0 and PORTXCFG=1

PORTXCFG PORTXCFG bit =1

bit=0

Signal Signal Direc. Description Fig.
PAO TOout ouT TimerO Overflow Pulse 4-2
PA1 Tlout ouT Timerl Overflow Pulse 4-2
PA2 OE# ouT EZ-USB Output Enable 4-2
PA3 Cs# ouT EZ-USB Chip Select 4-2
PA4 FWR# ouT EZ-USB Fast Write Strobe 4-2
PAS5 FRD# ouT EZ-USB Fast Read Strobe 4-2
PAG6 RxDQout ouT UARTO mode 0 Data Out 4-2
PA7 RxDlout ouT UART1 mode 0 Data Out 4-2
PBO T2 IN Timer2 Clock Input 4-3
PB1 T2EX IN Timer2 Capture/Rel oad 4-3
PB2 RxD1 IN UART1 Receive Data 4-3
PB3 TxD1 ouT UART1 Transmit Data 4-2
PB4 INT4 IN Interrupt 4 4-3
PB5 INT5# IN Interrupt 5 4-3
PB6 INT6 IN Interrupt 6 4-3
PB7 T20UT ouT Timer2 Overflow Pulse 4-2
PCO RxDO IN UARTO Receive Data 4-3
PC1 TxDO ouT UARTO Transmit Data 4-2
PC2 INTO# IN Interrupt O 4-3
PC3 INT1# IN Interrupt 1 4-3
PC4 T0 IN TimerO Clock Input 4-3
PC5 T1 IN Timerl Clock Input 4-3
PC6 WR# ouT Write Strobe 4-2
PC7 RD# ouT Read Strobe 4-2

Depending on whether the alternate function is an input or output, the 10 logic is slightly
different, as shown in Figure 4-2 (output) and Figure 4-3 (input). The last column of
Table 4-1 indicates which figure applies to each pin.

EZ-USB TRM YV 1.51

Chapter 4. EZ-USB Input/Output

Page 41

\ Alternate Function Output H(\ Alternate Function Output }—[>7

oE |
4
ouT reg {£‘ ouT reg ‘
PINS <] PINS <]
AN AN
PORTCFG=0 (port) PORTCFG=1 (alternate function)

Figure 4-2. Alternate Function isan OUTPUT

Referring to Figure 4-2, when PORTCFG=0, the 10 port is selected. In this case the
alternate function (shaded) is disconnected and the pin functions exactly as shown in
Figure 4-1. When PORTCFG=1, the aternate function is connected to the 10 pin and the
output register and buffer are disconnected. Note that the 8051 can still read the state of
the pin, and thus the alternate function value.

Alternate Function Input }—<F \ Alternate Function Input }—<]7

| oE |
4
ouT reg {ﬁﬁ ouT reg ‘
PINS <} PINS <}
PORTCFG=0 (port) PORTCFG=1 (alternate function)

Figure 4-3. Alternate Function isan INPUT

Referring to Figure 4-3, when PORTCFG=0, the 10 port is selected. Thisis the general
1O port shown in Figure 4-1 with one important difference—the aternate function is
aways‘listening’. Whether the port pin is set for output or input, the pin signal also
drives the alternate function. 8051 firmware should insure that if the alternate function is
not used (if the pin is general-purpose 10 only), the aternate input function is disabled.

For example, suppose the PB4/INT4 pin is configured for PB4. The pin signa isaso
routed to INT4. If INT4 isnot used by the application, it should not be enabled.
Alternatively, enabling INT4 could be useful, allowing 10 bit PB4 to trigger an interrupt.

When PORTXCFG=1, the alternate function is selected. The output register and buffer

are disconnected. The PINS bit can still read the pin, and thus the input to the alternate
function.

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 42

4.3 10 Port Registers

PORTACFG | RxDlout | RxDOout FRD FWR CSs OE Tlout TOout
OUTA D7 D6 D5 D4 D3 D2 D1 DO
PINSA D7 D6 D5 D4 D3 D2 D1 DO
OEA D7 D6 D5 D4 D3 D2 D1 DO
PORTBCFG | T20UT INT6 INT5 INT4 TxD1 RxD1 T2EX T2
ouTB D7 D6 D5 D4 D3 D2 D1 DO
PINSB D7 D6 D5 D4 D3 D2 D1 DO
OEB D7 D6 D5 D4 D3 D2 D1 DO
PORTCCFG RD WR T1 TO INT1 INTO TxDO RxDO
ouTC D7 D6 D5 D4 D3 D2 D1 DO
PINSC D7 D6 D5 D4 D3 D2 D1 DO
OEC D7 D6 D5 D4 D3 D2 D1 DO

Figure 4-4. Registers associated with PORTS A,B,C

Figure 4-4 shows the registers associated with the EZ-USB 10 ports. The power-on
default for the PORTCFG bitsis 0, selecting the 10 port function. The power-on default
for the OE hitsis 0, selecting the input direction.

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 43

4.4 1°C Controller

The EZ-USB core contains an 1°C controller for boot loading and general-purpose 1°C
businterface. This controller usesthe SCL (Serial Clock) and SDA (Seria Data) pins.
Chapter 5, “Enumeration-ReNumeration™” , describes how the boot load operates at
power-on to read the contents of an external seriadl EEPROM in order to determine the
initial EZ-USB configuration. The boot loader operates automatically while the 8051 is
held in reset. The last section of this chapter describes the operating details of the boot
loader.

After the boot sequence completes and the 8051 is brought out of reset, the generd
purpose |°C controller is available to the 8051 for interface to external 1°C devices such
as other EEPROMS, 10 chips, audio/video control chips, etc.

4.5 8051 I°C Controller

start

SDA

\

/D7><D6><D5><D4><D3><D2><D1><Do><ﬁ\

stop

SCL 1 2 3 4 5 6 . 8 9 /

Figure 4-5. General I°C Transfer

Figure 4-5 illustrates the waveforms for an 1°C transfer. SCL and SDA are open-drain
EZ-USB pins, which must be pulled up to Vcc with external resistors. The EZ-USB chip
is an 1°C bus master only, meaning that it synchronizes data transfers by generating clock
pulses on SCL by driving low. Once the master drives SCL low, external slave devices
can also drive SCL low to extend clock cycle times.

To synchronize I°C data, serial data (SDA) is permitted to change state only while SCL is
low, and must be valid while SCL is high. Two exceptions to this rule are used to
generate START and STOP conditions. A START condition is defined as SDA going
low while SCL is high, and a STOP condition is defined as SDA going high while SCL is
high. Datais sent MSB first. During the last bit time (clock #9 in Figure 4-5) the master
(EZ-USB) floats the SDA line to alow the slave to acknowledge the transfer by pulling
SDA low.

Multiple 1°C Bus Masters

The EZ-USB chip acts only as an 1°C bus master, never aslave. However, the 8051 can
detect a second master by checking for BERR=1 (Section 4.5).

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 44

SDA

SCL

start

—_\ / SA3 >< SA2 >< SAL >< SA0 >< DA2 >< DAL >< DAO / RIW \ ACK b7

1 2 3 4 5 6 7 8 9 10

Figure 4-6. Addressing an 1°C Peripheral

The first byte of an 1°C bus transaction contains the address of the desired peripheral.
Figure 4-6 shows the format for this first byte, which is sometimes called a control byte.

A master sends the bit sequence shown in Figure 4-6 after sending a START condition.
The master uses this 9-bit sequence to select an 1°C peripheral at a particular address, to
establish the transfer direction (using R/W#), and to determine if the peripheral is present
by testing for ACK#.

The four most significant bits SA3-SAQ are the peripheral chip’'s slave address. 1°C
devices are pre-assigned slave addresses by device type, for example the slave address
“1010" is assigned to EEPROMS. The three bits DA2-DAO usually reflect the states of
12C device address pins. Devices with three address pins can be strapped to alow eight
distinct addresses for the same device type. The eighth bit (R/#W) sets the direction for
the ensuing data transfer, 1 for master read, and O for master write. Most address
transfers are followed by one or more data transfers, with the STOP condition generated
after the last data byte is transferred.

In Figure 4-6, aREAD transfer follows the address byte (at clock 8, the master sets the
R/#W bit high, indicating READ). At clock 9 the peripheral device responds to its
address by asserting ACK. At clock 10 the master floats SDA and issues SCL pulsesto
clock in SDA data supplied by the dave.

Assuming the 12.0 MHz crystal used by the EZ-USB family, the SCL frequency is 90.9
KHz, giving an I°C transfer rate of 11 microseconds per bit.

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 45

11

12CS I°C Control and Status 7FA5
b7 b6 b5 b4 b3 b2 bl b0
START STOP | LASTRD ID1 IDO BERR ACK DONE
|2DAT I°C Data 7FAG
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO

Figure 4-7. I°C Registers

The 8051 uses the two registers shown in Figure 4-7 to conduct 1°C transfers. The 8051
transfers data to and from the 1°C bus by writing and reading the I2DAT register. The
|2CS register controls I°C transfers and reports various status conditions. The three
control bitsare START, STOP and LASTRD. The remaining bits are status bits. Writing
to a status bit has no effect.

4.6 Control Bits

46.1 START

The 8051 sets the START bit to 1 to prepare an 1°C bus transfer. |If START=1, the next
8051 load to I2DAT will generate the start condition followed by the serialized byte of
datain I2DAT. The 8051 loads data in the format shown in Figure 4-5 after setting the
START bit. The I°C controller clears the START bit during the ACK interval (clock 9in
Figure 4-5).

4.6.2 STOP

The 8051 sets STOP=1 to terminate an 1°C bus transfer. The I°C controller clears the
STOP hit after completing the STOP condition. If the 8051 sets the STOP bit during a
byte transfer, the STOP condition will be generated immediately following the ACK
phase of the byte transfer. If no byte transfer is occurring when the STOP bit is set, the
STOP condition will be carried out immediately on the bus. Data should not be written
to 12CS or I2DAT until the STOP bit returns low.

4.6.3 LASTRD

To read data over the I1°C bus, an 1°C master floats the SDA line and issues clock pulses
on the SCL line. After every eight bits, the master drives SDA low for one clock to
indicate ACK. To signal the last byte of the read transfer, the master floats SDA at ACK
time to instruct the slave to stop sending. Thisis controlled by the 8051 by setting

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 46

LastRD=1 before reading the |ast byte of aread transfer. The I°C controller clears the
LastRD hit at the end of the transfer (at ACK time).

Note: Setting LastRD does not automatically generate a STOP condition. The 8051
should also set the STOP bit at the end of aread transfer.

4.7 Status Bits

After a byte transfer the EZ-USB controller updates the three status bits BERR, ACK and
DONE. If no STOP condition was transmitted they are updated at ACK time. If aSTOP
condition was transmitted they are updated after the STOP condition is transmitted.

4.7.1 DONE

The I?C controller sets this bit whenever it completes a byte transfer, right after the ACK
stage. The controller also generates an 1°C interrupt request (8051 INT3) when it sets the
DONE bit. The I°C controller clears the DONE bit when the 8051 reads or writes the
I2DAT register, and the 1°C interrupt request bit whenever the 8051 reads or writes the
I2CS or I12DAT register.

4.7.2 ACK

Every ninth SCL of awrite transfer the slave indicates reception of the byte by asserting
ACK. The EZ-USB controller floats SDA during this time, samples the SDA line, and
updates the ACK bit with the complement of the detected value. ACK=1 indicates
acknowledge, and ACK=0 indicates not-acknowledge. The EZ-USB core updates the
ACK bit at the same time it sets DONE=1. The ACK bit should be ignored for read
transfers on the bus.

4.7.3 BERR

This bit indicates an 1°C bus error. BERR=1 indicates that there was bus contention,
which results when an outside device drives the bus LO when it shouldn’t, or when
another bus master wins arbitration, taking control of the bus. BERR is cleared when the
8051 reads or writes the I2DAT register.

4.74 1D1,1D0

These bits are set by the boot loader (Section 4.10) to indicate whether an 8-bit address or
16-bit address EEPROM at ave address 000 or 001 was detected at power-on. They are
normally used only for debug purposes. Table 4-3 on page 50 shows the encoding for
these bits.

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 47

4.8 Sending I°C Data

To send amultiple byte data record over the 1°C bus, follow these steps:

Nog,A~WNE

Set the START bit.

Write the peripheral address and direction=0 (for write) to I2DAT.
Wait for DONE=1*. If BERR=1 or ACK=0go to step 7.

Load I2DAT with a data byte.

Wait for DONE=1*. If BERR=1 or ACK=0go to step 7.

Repeat steps 4,5 for each byte until all bytes have been transferred.
Set STOP=1

*|f the I°C interrupt (8051 INT 3) is enabled, each “Wait for DONE=1" step can be
interrupt driven, and handled by an interrupt service routine. See “1%C Interrupt” in
Chapter 9 for more details regarding the 1°C interrupt.

4.9 Receiving 1°C Data

To read a multiple byte data record, follow these steps:

1
2.

. Set the START bit.

Write the peripheral address and direction =1 (for read) to I2DAT.

3. Wait for DONE=1*. If BERR=1 or ACK=0 then terminate by setting

e

©CoNoO

10.
11.
12.

STOP=1.

Read I2DAT and discard the data. This initiates the first burst of nine SCL

pulses to clock in the first byte from the dave.
Wait for DONE=1*. If BERR=1 then terminate by setting STOP=1.
Read the data from I2DAT. Thisinitiates another read transfer.

Repeat steps 5,6 for each byte until ready to read the second-to-last byte.

Before reading the second-to-last I2DAT byte, set LastRD=1.

Read the data from I2DAT. With LastRD=1, thisinitiates the fina byte
on the I°C bus.

Wait for DONE=1*. If BERR=1 then terminate by setting STOP=1.
Set STOP=1.

read

Read the last byte from I2DAT immediately (the next instruction) after setting
the STOP bit. Thisretrievesthe last data byte without initiating an extra read

transaction (nine more SCL pulses) on the 1°C bus.

*|f the I°C interrupt (8051 INT 3) is enabled, each “Wait for DONE=1" step can be
interrupt-driven, and handled by an interrupt service routine. See “1°C Interrupt” in
Chapter 9 for more details regarding the 1°C interrupt.

EZ-USB TRM YV 1.51 Chapter 4. EZ-USB Input/Output

Page 48

4.10 1°C Boot Loader

When the EZ-USB chip comes out of reset, the EZ-USB boot loader checks for the
presence of an EEPROM on its I°C bus. If an EEPROM is detected, the |oader reads the
first EEPROM byte to determine how to enumerate (specifically, whether to supply ID
information from the EZ-USB core or from the EEPROM). The various enumeration
modes are described in Chapter 5, “ Enumeration/ReNumeration”.

Prior to reading the first EEPROM byte, the boot |oader must set an address counter
inside the EEPROM to zero. It does this by sending a control byte (write) to select the
EEPROM, followed by a zero address to set the internal EEPROM address pointer to
zero. Then it issues a control byte (read), and reads the first EEPROM byte.

The EZ-USB boot loader supports two 1°C EEPROM types:

1. EEPROMs with address A[7..4]=1010 that use an 8-bit address (example:
241.C00, LCOV/A, LCO2/A).

2. EEPROMs with address A[7..4]=1010 that use a 16-bit address (example:
241.C32, 24L.C64).

EEPROMS with densities up to 256 bytes require loading a single address byte. Larger
EEPROM require loading two address bytes.

The EZ-USB 1C controller needs to determine which EEPROM type is connected—one
or two address bytes--so that it can properly reset the EEPROM address pointer to zero

before reading the EEPROM. For the single-byte address part, it must send a single zero
byte of address, and for the two-byte address part it must send two zero bytes of address.

Since there is no direct way to detect which EEPROM type—single or double address—
is connected, the 1°C controller uses the EEPROM address pins A2, A1 and A0 to
determine whether to send out one or two bytes of address. This algorithm requires that
that the EEPROM address lines are strapped as shown in Table 4-2. Single-byte-address
EEPROMS are strapped to address 000, and double-byte-address EEPROMS are
strapped to address 001.

Table 4-2. Srap Boot EEPROM Address Lines to these values

Bytes | Example A2 | A1 | AO
EEPROM
16 24 COo0* na | na | nla

128 24L.Co1 0 0 0
256 241.C02 0 0 0
4K 241.C32 0 0 1
8K 24L.Ce4 0 0 1
*This EEPROM does not have address pins

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 49

The I?C controller performs a three-step test at power-on to determine whether a one-
byte-address or a two-byte-address EEPROM is attached. Thistest proceeds as follows:

1. Thel*C controller sends out a“read current address’ command to 1°C sub-address
000 (10100001). If no ACK isreturned, the controller proceedsto step 2. If ACK is
returned, the one-byte-address device isindicated. The controller discards the data
and proceeds to step 3.

2. Thel?C controller sends out a“read current address’ command to 1°C sub-address
001 (10100011). If ACK isreturned, the two-byte-address device isindicated. The
controller discards the data and proceeds to step 3. If no ACK isreturned, the
controller assumes that a valid EEPROM is not connected, assumes the “No Serial
EEPROM” mode, and terminates the boot load.

3. TheI*C controller resets the EEPROM address pointer to zero (using the appropriate
number of address bytes), then reads the first EEPROM byte. If does not read 0xBO
or 0xB2, the controller assumes the “No Serial EEPROM” mode. If it reads either
0xBO or 0xB2, the controller copies the next six bytesinto internal storage, and if it
reads OxB2, proceeds to |oad the EEPROM contents into internal RAM.

The results of this power-on test are reported in the ID1 and DO bits, as shown in Table
4-3.

Table 4-3. Results of power-on 1°C test

ID1 | IDO | Meaning

0 0 No EEPROM detected

1 One byte address load EEPROM detected
0 Two byte address load EEPROM detected
1 Not Used

k=

Other EEPROM devices (with device addresses of 1010) can be attached to the 1°C bus
for general purpose 8051 use, as long as they are strapped for addresses other than 000 or
001. If a24LC00 EEPROM is used, no other EEPROM S with device address 1010 may
be used, since the 24L COO responds to all eight sub-addresses.

EZ-USB TRM V 1.51 Chapter 4. EZ-USB Input/Output Page 50

5 EZ-USB Enumeration and ReNumer ation™

5.1 Introduction

The EZ-USB chip is soft. 8051 code and data is stored in internal RAM, which is loaded
from the host using the USB interface. Periphera devices that use the EZ-USB chip can
operate without ROM, EPROM or FLASH memory, shortening production lead times
and making firmware updates a breeze.

To support the soft feature, the EZ-USB chip automatically enumerates as a USB device
without firmware, so the USB interface itself may be used to download 8051 code and
descriptor tables. The EZ-USB core performs thisinitial (power-on) enumeration and
code download while the 8051 is held in reset. Thisinitial USB device, which supports
code download, is called the Default Anchor Device.

After the code and descriptor tables have been downloaded from the host to EZ-USB
RAM, the 8051 is brought out of reset and begins executing the device code. The EZ-
USB device enumerates again, this time as the loaded device. This second enumeration
is called ReNumeration™, which the EZ-USB chip accomplishes by electrically
simulating a physical disconnection and reconnection to the USB.

An EZ-USB control bit called ReNum (for “ReNumerated”) determines which entity, the
core or the 8051, handles device requests over endpoint zero. At power-on, the RENUM
bit (USBCS.1) is zero, indicating that the EZ-USB core automatically handles device
requests. Once the 8051 is running, it can set ReNum=1 to indicate that user 8051 code
handles subsequent device requests using its downloaded firmware. Chapter 7,
“Endpoint Zero” describes how the 8051 handles device requests while ReNum=1.

It isalso possible for the 8051 to run with ReNum=0 and have the EZ-USB core handle
certain endpoint zero requests (see box, “Another Use for the Default Anchor Device’).

This chapter deals with the various EZ-USB startup modes, and describes the default
USB devicethat is created at initial enumeration.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 51

Another Use for the Default Anchor Device

The Default Anchor Device is established at power-on to set up a USB device capable of

downloading firmware into EZ-USB RAM. Another useful feature of the EZ-USB

default device is that 8051 code can be written to support the already-configured Anchor
Generic USB device. Before bringing the 8051 out of reset, the EZ-USB core enables
certain endpoints and reports them to the host via descriptors. By utilizing the default
Anchor machine (by keeping ReNum=0), the 8051 can, with very little code, perform
meaningful USB transfers that use these default endpoints. This accelerates the USB
learning curve. To see an example of how little code is actually necessary, take alook at

the polled bulk transfer example in the “EZ-USB Bulk Transfers’ chapter.

5.2 The Default Anchor Device

The Default Anchor Device consists of asingle USB configuration containing one

interface (interface 0) with three alternate settings O, 1 and 2. The endpoints reported for
this device are shown in Table 5-1. Note that aternate setting zero uses no interrupt or

isochronous bandwidth, as recommended by the USB specification.

Table 5-1. EZ-USB Default Endpoints

Endpoint Type Alter nate Setting
0 |1 | 2
Max Packet Size (bytes)
0 CTL 64 64 64
1IN INT 0 16 64
2IN BULK 0 64 64
20UT BULK 0 64 64
41N BULK 0 64 64
4 0UT BULK 0 64 64
6IN BULK 0 64 64
6 OUT BULK 0 64 64
8IN 1SO 0 16 256
8 OUT SO 0 16 256
9IN SO 0 16 16
90UT SO 0 16 16
10IN SO 0 16 16
10 OUT SO 0 16 16

For purposes of downloading 8051 code, the Default Anchor Device requires only

CONTROL endpoint zero. Nevertheless, the Anchor default machine is enhanced to
support other endpoints as shown in Table 5-1 (note the alternate settings 1 and 2). This
enhancement is provided to allow the developer to get a head-start generating USB traffic
and learning the USB system. All the descriptors are automatically handled by the EZ-
USB core, so the developer can immediately start writing code to transfer data over USB
using these preconfigured endpoints.

EZ-USB TRM YV 1.51

Chapter 5. EZ-USB Enumeration and ReNumeration™

Page 52

When the EZ-USB core establishes the Default Anchor Device, it also sets the proper
endpoint configuration bits to match the descriptor data supplied by the EZ-USB core.
For example, bulk endpoints 2, 4 and 6 are implemented in the Default Anchor Device,

so the EZ-USB core sets the corresponding EPVAL bits. Chapter 6, “EZ-USB Bulk

Transfers’ contains a detailed explanation of the EPVAL bits.

Table 5-9 through Table 5-19 (pages 63-71) show the various descriptors returned to the
host by the EZ-USB core when ReNum=0. These tables describe the USB endpoints

defined in Table 5-1, along with other USB details, and should be useful to help

understand the structure of USB descriptors.

5.3 EZ-USB Core Response to EPO Device Requests

Table 5-2 shows how the EZ-USB core responds to endpoint zero requests when

ReNum=0.

Table 5-2. How the EZ-USB core handles EPO requests when ReNum=0

bRequest Name Action: ReNum=0
0x00 Get Statug/Device Returns two zero bytes
0x00 Get Status/Endpoint Supplies EP Stall bit for
indicated EP
0x00 Get Statug/Interface Returns two zero bytes
0x01 Clear Feature/Device | None
0x01 Clear Clears Stall bit for indicated
Feature/Endpoint EP
0x02 (reserved) None
0x03 Set Feature/Device None
0x03 Set Feature/Endpoint | Sets Stall bit for indicated EP
0x04 (reserved) None
0x05 Set Address Updates FNADD register
0x06 Get Descriptor Suppliesinternal table
0x07 Set Descriptor None
0x08 Get Configuration Returnsinternal value
0x09 Set Configuration Setsinternal value
O0x0A Get Interface Returnsinternal value (0-3)
0x0B Set Interface Setsinterna value (0-3)
0x0C Sync Frame None
Vendor Requests
0xA0 Anchor Load Upload/Download RAM
O0xA1-OxAF | Reserved Reserved by Anchor Chips
all other None
The USB host enumerates by issuing:

Set Address

Get_Descriptor

Set_Configuration (to 1)

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™

Page 53

As shown in Table 5-2, after enumeration the EZ-USB core responds to the following

host requests:

Set or clear an endpoint stall (Set/Clear Feature-Endpoint).

Read the stall status for an endpoint (Get_Status-Endpoint).
Set/Read an 8-bit configuration number (Set/Get_Configuration.
Set/Read a 2-bit interface alternate setting (Set/Get_Interface).

Download or upload 8051 RAM.

5.4 Anchor Load

The USB specification provides for vendor-specific requests to be sent over CONTROL
endpoint zero. The EZ-USB chip uses this feature to transfer data between the host and
EZ-USB RAM. The EZ-USB core responds to two “Anchor Load” requests, as shown in
Table 5-3 and Table 5-4 below:

Table 5-3. Anchor Download

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x40 Vendor Request, OUT | Nonerequired
1 bRequest O0xAQ “Anchor Load”
2 wValueL AddrL | Starting address
3 wValueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL Number of Bytes
7 wL engthH LenH
Table 5-4. Anchor Upload
Byte | Field Value Meaning 8051 Response
0 bmRequest | OxCO Vendor Request, IN None required
1 bRequest O0xAQ “Anchor Load”
2 wValueL AddrL | Starting address
3 wValueH AddrH
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL Number of Bytes
7 wLengthH LenH

EZ-USB TRM YV 1.51

Chapter 5. EZ-USB Enumeration and ReNumeration™

Page 54

These requests are always handled by the EZ-USB core (ReNum=0 or 1). This means
that OXAO is ‘reserved’ by the EZ-USB chip, and therefore should never be used for a
vendor request. Anchor Chips also reserves bRequest values OxA 1 through OXAF, so

your system should not use these bRequest values.

A host |loader program typically writes 0x01 to the CPUCS register to put the 8051 into
RESET, loads all or part of the EZ-USB RAM with 8051 code, and finally reloads the
CPUCS register with 0 to take the 8051 out of RESET. The CPUCS register isthe only
USB register that can be written using the Anchor Download command.

Anchor loads are restricted to internal EZ-USB memory.

When Renum=1 at Power-On

At power-on, the ReNum bit is normally set to zero so that the EZ-USB handles device
requests over CONTROL endpoint zero. This allows the core to download 8051
firmware and then reconnect as the target device.

At power on, the EZ-USB core checks the I°C bus for the presence of an EEPROM. If it
finds one, and the first byte of the EEPROM is 0xB2, the core copies the contents of the
EEPROM into internal RAM, sets the ReNum bit to 1, and un-RESETS the 8051. The
8051 wakes up ready to run firmware in RAM. The required data format for this load
module is described in the next section.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 55

5.5 Enumeration Modes

When the EZ-USB chip comes out of reset, the EZ-USB core makes a decision about
how to enumerate based on the contents of an external EEPROM on its 1°C bus. Table
5-5 shows the choices. In Table 5-5, PID means Product ID, VID means Version ID, and
DID means Device ID.

Table 5-5. EZ-USB Core Action at Power-Up

First EEPROM byte EZ-USB Core Action

Not OxBO or 0xB2 Supplies descriptors, PID/VID/DID from EZ-USB
Core. Sets ReNum=0.

0xBO Supplies descriptors from EZ-USB core,
PID/VID/DID from EEPROM. Sets ReNum=0.

0xB2 Loads EEPROM into EZ-USB RAM. Sets
ReNum=1; therefore 8051 supplies descriptors,
PID/VID/DID.

If no EEPROM s present, or if oneis present but the first byte is neither 0XBO nor 0xB2,
the EZ-USB core enumerates using internally stored descriptor data, which contains the
Anchor ChipsVID, PID and DID. These ID bytes cause the host operating system to
load an Anchor Chips device driver. The EZ-USB core also establishes the Anchor
Default USB device. Thismodeisonly used for code development and debug.

If aserial EEPROM is attached to the 1°C bus and its first byte is 0xBO, the EZ-USB core
enumerates with the same internally stored descriptor data as for the no-EEPROM case,
but with one difference. It suppliesthe PID/VID/DID datafrom six bytesin the external
EEPROM rather than from the EZ-USB core. The custom VID/PID/DID in the
EEPROM causes the host operating system to load a device driver that is matched to the
EEPROM VID/PID/DID. This EZ-USB operating mode provides a soft USB device
using ReNumeration™.

If aserial EEPROM is attached to the 1°C bus and its first byte is 0xB2, the EZ-USB core
transfers the contents of the EEPROM into interna RAM. The EZ-USB core also sets
the ReNum bit to 1 to indicate that the 8051 (and not the EZ-USB core) responds to
device requests over CONTROL endpoint zero (see box, “When ReNum=1 at Power-
On”). Therefore al descriptor data, including VID/DID/PID values, are supplied by the
8051 firmware. The last byte loaded from the EEPROM (to the CPUCS register) releases
the 8051 reset signal, allowing the EZ-USB chip to come up as a fully custom device
with firmware in RAM.

The following sections discuss these enumeration methods in detail.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 56

The Other Half of the I°C Story

The EZ-USB IC controller serves two purposes. First, as described in this chapter, it
manages the serial EEPROM interface that operates automatically at power-on to
determine the enumeration method.

Second, once the 8051 is up and running, the 8051 can access the 1°C controller for
general-purpose use. This makes awide range of standard 1°C peripherals available to an
EZ-USB system.

Other 1°C devices can be attached to the SCL and SDA lines of the I°C bus as long as
there is no address conflict with the serial EEPROM described in this chapter. Chapter 4,
“Input/Output” describes the general-purpose nature of the 1°C interface.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 57

5.6 No Serial EEPROM

In the simplest case, no serial EEPROM iss present on the 1°C bus, or an EEPROM is
present but its first byte is not OxBO or OxB2. In this case, descriptor datais supplied by a
table internal to the EZ-USB core. The EZ-USB chip comes on as the Anchor Default
Device, with the ID bytes shown in Table 5-6.

Table 5-6. EZ-USB Device Characteristics, No Serial EEPROM

Vendor ID 0x0547 (Anchor Chips)
Product ID 0x2131 (EZ-USB)
Device Release OxXXY'Y (depends on revision)

The USB host queries the device during enumeration, reads the device descriptor, and
uses the Table 5-6 bytes to determine which software driver to load into the operating
system. Thisisamajor USB feature—drivers are dynamically matched with devices and
automatically loaded when a device is plugged in.

The no-EEPROM case is the simplest configuration, but also the most limiting. This
mode is used only for code development, utilizing Anchor software tools matched to the
ID valuesin Table 5-6.

Reminder:

The EZ-USB core uses the Table 5-6 data for enumeration only if the ReNum bit is zero.
If ReNum=1, enumeration datais supplied by 8051 code.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 58

5.7 Serial EEPROM Present, First Byteis OxBO

Table 5-7. EEPROM Data Format for “ BO” Load

EEPROM Contents
Address

0xBO

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
DeviceID (DID) L
DeviceID (DID) H
not used

~Njolg|~wNk|o

If at power-on, the EZ-USB core detects an EEPROM connected to its I°C port with the
value OxBO at address O, the EZ-USB core copies the Vendor ID (VID), Product ID (PID)
and Device ID (DID) from the EEPROM (Table 5-7) into internal storage. The EZ-USB
core then supplies these bytes to the host as part of the Get Descriptor-Device request.
(These six bytes replace only the VID/PID/DID bytes in the default Anchor device
descriptor). This causes a driver matched to the VID/PID/DID values in the EEPROM,
instead of those in the EZ-USB core, to be loaded into the OS.

After initia enumeration, the driver downloads 8051 code and USB descriptor data into
EZ-USB RAM and starts the 8051. The code then ReNumerates™ to come on as the
fully custom device.

A recommended EEPROM for this application is the Microchip 24LCO00, asmall (5-pin
SOT package) inexpensive 16-byte serial EEPROM. A 24L.CO01 (128 bytes) or 24L.C02
(256 bytes) may be substituted for the 24L.C0O, but as with the 24LC0O, only the first
seven bytes are used.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 59

5.8 Serial EEPROM Present, First Byteis OxB2

If at power-on, the EZ-USB core detects an EEPROM connected to its I°C port with the

value 0xB2 at address O, the EZ-USB core |oads the EEPROM datainto EZ-USB RAM.
It also sets the ReNum bit to 1, causing device requests to be fielded by the 8051 instead
of the EZ-USB core. The EEPROM data format is shown in Table 5-8.

Table 5-8. EEPROM Data Format for “ B2” Load

EEPROM | Contents
Address
0 0xB2

Vendor ID (VID) L
Vendor ID (VID) H
Product ID (PID) L
Product ID (PID) H
DeviceID (DID) L
DeviceID (DID) H
Length H

Length L

StartAddr H

0 StartAddr L

Data block

RO |IN|oO |0 (WIN|F
1

Length H
Length L
StartAddr H
StartAddr L
Data block

0x80
0x01
Ox7F
--- 0x92
last 00000000

The first byte tells the EZ-USB core to copy EEPROM datainto RAM. The next six
bytes (1-6) are ignored (see box).

One or more data records follow, starting at EEPROM address 7. Each datarecord
consists of alength, a starting address, and ablock of data bytes. The last data record
must have the MSB of its Length H byte set to 1. The last data record consists of a
single-byte load to the CPUCS register at 0x7F92. Only the LSB of this byteis
significant—8051RES (CPUCS.0) is set to zero to bring the 8051 out of reset.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 60

Serial EEPROM data can be loaded into two EZ-USB RAM spaces only:

1. 8051 program/data RAM at 0x0000-0x1B40
2. The CPUCS register at Ox7F92 (only bit O, 8051 RESET, is host-loadable).

VID/PID/DID in a*“B2" EEPROM

Bytes 1-6 of a“B2” EEPROM can be loaded with VID/PID/DID bytesif it is desired at
some point to run the 8051 program with ReNum=0 (EZ-USB core handles device
reguests), using the EEPROM VID/PID/DID rather than the Anchor Chips values built
into the EZ-USB core.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 61

5.9 ReNumeration™

Three EZ-USB control bitsin the USBCS (USB Control and Status) register control the
ReNumeration™ process. DISCON, DISCOE and RENUM.

USBCS USB Control and Status 7FD6
b7 b6 b5 b4 b3 b2 bl b0
DISCON DISCOE RENUM
R/W R R R R/W R/W R/W R/W
0 0 0 0 0 1 0 0

Figure 5-1, USB Control and Satus Register

The inverted value of DISCON appears on the EZ-USB DISCON# pin. The DISCOE
pin tri-states the DISCON# pin when DISCOE=0.

DI SCON

DI SCON#
pin

Figure 5-2. Disconnect pin logic

DI SCOE

To simulate a USB disconnect, the 8051 first sets DISCON=0 to present alogic HI on the
DISCON# pin when the output is enabled. When DISCOE=1, the DISCON# pin drives
high, supplying the required voltage to the 1500 ohm pullup resistor on the D+ line. To
simulate a disconnect, the 8051 sets DISCOE=0 to float the DISCON# pin. Then the
8051 sets RENUM=1 to indicate that the 8051, and not the USB core, will handle USB
requests. Then the 8051 re-connects by setting DISCOE=1 which drives the DISCON#
pin HI and re-indicates the device presence on the bus. This arrangement allows
connecting the 1500 ohm resistor directly between the DISCON# pin and the USB D+
line (Figure 5-3).

DISCON#

EZ-USB
1500
11
jz o

D+ D+
GND
USB-B

Figure 5-3. Typical Disconnect Circuit (DISCOE=1)

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 62

5.10 Multiple ReNumerations™

The 8051 can ReNumerate™ anytime. One use for this capability might be to “fine tune”
an isochronous endpoint’ s bandwidth requests by trying various descriptor values and

ReNumerating.

5.11 Default Descriptor

Table 5-9 through Table 5-19 show the descriptor data tables built into the EZ-USB core.
The tables are presented in the order that the bytes are stored.

Table 5-9. Anchor Default Device Descriptor

Offset |[Field Description Value
0 bLength Length of this descriptor = 18 bytes 12H
1 bDescriptorType Descriptor Type = Device 01H
2 bcdUSB (L) USB spec version 1.00 (L) O00H
3 bcdUSB (H) USB spec version 1.00 (H) 01H
4 bDeviceClass Device class (FF is vendor-specific) FFH
5 bDeviceSubClass Device sub-class (FF is vendor-specific) FFH
6 bDeviceProtocol Device Protocol (FF is vendor-specific) FFH
7 bMaxPacketSize0 Max packet size for EPO = 64 bytes 40H
8 idVendor (L) Vendorid (L) Anchor Chips Inc. = 0547H 47H
9 idVendor (H) Vendor id (H) 05H
10 idProduct (L) Productid (L) EZ-USB =2131H 31H
11 idProduct (H) Product id (H) 21H
12 bcdDevice (L) Device release Number (BCD,L) (see individual data sheet) XXH
13 bcdDevice (H) Device release Number (BCD,H) (see individual data sheet) YYH
14 iManufacturer Manufacturer index string = none O00H
15 iProduct Product index string = none O00H
16 iSerialNumber Serial number index string = none O00H
17 bNumConfigurations Number of configurations in this interface = 1 01H

The Device descriptor specifies a MaxPacketSize of 64 bytes for endpoint O, contains
Anchor Chips Vendor, Product and Release Number ID’s, and uses no string indices.
Release Number ID’s (“XX” and “YY”) are found in individual Anchor Chips data
sheets. The EZ-USB core returns thisinformation in response to a
“Get_Descriptor/Device” host request.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™

Page 63

Table 5-10. Anchor Default Configuration Descriptor

Offset |[Field Description Value
0 bLength Length of this descriptor = 9 bytes 09H
1 bDescriptorType Descriptor Type = Configuration 02H
2 wTotalLength (L) Total length (L) including Interface & Endpoint descriptors DAH
3 wTotalLength (H) Total length (H) O00H
4 bNuminterfaces Number of interfaces in this configuration 01H
5 bConfigurationValue Configuration value used by Set_Configuration 01H
Request to select this interface

iConfiguration Index of string describing this configuration = none O00H
7 bmaAttributes Attributes - bus powered, no wakeup 80H
8 MaxPower Max power - 100 ma 32H

The configuration descriptor includes atotal length field (offset 2-3) that encompasses all
interface and endpoint descriptors that follow the configuration descriptor. This
configuration describes a single interface (offset 4). The host selects this configuration
by issuing a Set_Configuration request specifying configuration #1 (offset 5).

Table 5-11. Anchor Default Interface 0, Alternate Setting O Descriptor

Offset |Field Description Value
0 bLength Length of the interface descriptor 09H
1 bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 00H
3 bAlternateSetting Alternate setting value =0 00H
4 bNumEndpoints Number of endpoints in this interface (not counting EPO) = 0 O00H
5 binterfaceClass Interface class = vendor specific FFH
6 binterfaceSubClass Interface sub-class = vendor specific FFH
7 binterfaceProtocol Interface protocol = vendor specific FFH
8 ilnterface Index to string descriptor for this interface = none O00H

Interface O, aternate setting O describes endpoint O only. Thisis a“zero bandwidth”
setting. The interface has no string index.

Table 5-12. Anchor Default Interface 0, Alternate Setting 1 Descriptor

Offset |Field Description Value
0 bLength Length of the interface descriptor 09H
1 bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 00H
3 bAlternateSetting Alternate setting value = 1 01H
4 bNumEndpoints Number of endpoints in this interface (not counting EP0) = 13 ODH
5 binterfaceClass Interface class = vendor specific FFH
6 binterfaceSubClass Interface sub-class = vendor specific FFH
7 binterfaceProtocol Interface protocol = vendor specific FFH
8 ilnterface Index to string descriptor for this interface = none O00H

Interface 0, alternate setting 1 has thirteen endpoints, whose individual descriptors follow
the interface descriptor. The alternate settings have no string indices.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 64

Table 5-13. Anchor Default Interface 0, Alternate Setting 1, Interrupt Endpoint Descriptor

Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN1 81H
3 bmaAttributes xfr type = INT 03H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) |max packet size - high O00H
6 binterval polling interval in milliseconds = 10 msec O0AH

Interface O, aternate setting 1 has one interrupt endpoint, IN1, which has a max packet
size of 16 and a polling interval of 10 milliseconds.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 65

Table 5-14. Anchor Default Interface 0, Alternate Setting 1, Bulk Endpoint Descriptors

Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN2 82H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT2 02H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN4 84H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT4 04H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN6 86H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT6 06H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 66

Interface 0, aternate setting 1 has six bulk endpoints with max packet sizes of 64 bytes.
Even numbered endpoints were chosen to allow endpoint pairing. (For more on endpoint
pairing, see Chapter 6, Bulk Transfers.)

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 67

Table 5-15. Anchor Default Interface 0, Alternate Setting 1, 1sochronous Endpoint Descriptors

Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN8 88H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT8 08H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN9 89H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT9 09H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN10 8AH
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT10 O0AH
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H

Interface 0, aternate setting 1 has six isochronous endpoints with max packet sizes of 16
bytes. Thisisa“low bandwidth” setting.

EZ-USB TRM YV 1.51

Chapter 5. EZ-USB Enumeration and ReNumeration™

Page 68

Table 5-16. Anchor Default Interface 0, Alternate Setting 2 Descriptor

Offset |Field Description Value
0 bLength length of the interface descriptor 09H
1 bDescriptorType Descriptor Type = Interface 04H
2 binterfaceNumber Zero based index of this interface = 0 00H
3 bAlternateSetting Alternate setting value = 2 02H
4 bNumEndpoints Number of endpoints (not counting EP0O) = 13 ODH
5 binterfaceClass Interface class = vendor specific FFH
6 binterfaceSubClass Interface sub-class = vendor specific FFH
7 binterfaceProtocol Interface protocol = vendor specific FFH
8 ilnterface Index to string descriptor for this interface = none O00H

Interface 0, alternate setting 2 has thirteen endpoints, whose individual descriptors follow
the interface descriptor. Alternate setting 2 differs from alternate setting 1 in the max
packet sizes of its interrupt endpoint and two of its isochronous endpoints (EPSIN and
EP8OUT).

Table 5-17. Anchor Default Interface 0, Alternate Setting 2, Interrupt Endpoint Descriptor

Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN1 81H
3 bmaAttributes xfr type = INT 03H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds = 10 msec OAH

Alternate setting 2 for the interrupt endpoint 1-IN increases the max packet size for the
interrupt endpoint to 64.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 69

Table 5-18. Anchor Default Interface 0, Alternate Setting 2, Bulk Endpoint Descriptors

EZ-USB TRM YV 1.51

Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN2 82H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT2 02H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN4 84H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT4 04H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN6 86H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT6 06H
3 bmaAttributes xfr type = BULK 02H
4 wMaxPacketSize (L) max packet size = 64 bytes 40H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) O00H
The bulk endpoints for alternate setting 2 are identical to alternate setting 1.
Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 70

Table 5-19. Anchor Default Interface 0, Alternate Setting 2, 1sochronous Endpoint Descriptors

Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN8 88H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 256 bytes O00H
5 WMaxPacketSize (H) max packet size - high 01H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT8 08H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 256 bytes O00H
5 WNMaxPacketSize (H) max packet size - high 10H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN9 89H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT9 09H
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = IN10 8AH
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
Offset |Field Description Value
0 bLength length of this endpoint descriptor 07H
1 bDescriptorType Descriptor Type = Endpoint 05H
2 bEndpointAddress endpoint direction (1 is in) and address = OUT10 OAH
3 bmaAttributes xfr type = ISO 01H
4 wMaxPacketSize (L) max packet size = 16 bytes 10H
5 WNMaxPacketSize (H) max packet size - high O00H
6 binterval polling interval in milliseconds (1 for iso) 01H
EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 71

The only differences between aternate settings 1 and 2 are the max packet sizes for
EP8IN and EPSOUT. Thisisa*“high bandwidth” setting using 256 bytes each.

EZ-USB TRM V 1.51 Chapter 5. EZ-USB Enumeration and ReNumeration™ Page 72

6 EZ-USB Bulk Transfers

6.1 Introduction

|
I\

Tozm
a0xvOo

Token Packet

]
A
T
A
0

Payload
Data

oOFr 01O

Data Packet H/S

A
C
K

Pk

0 OO0O>»

|
I\

Token Packet

P X>»-H>»0

Payload
Data

Data Packet

oOFr 0OXTO

Figure 6-1. Two BULK transfers, IN and OUT

EZ-USB provides sixteen endpoints for BULK, CONTROL and INTERRUPT transfers,
numbered 0-7 as shown in Table 6-1. This chapter describes BULK and INTERRUPT

transfers. INTERRUPT transfers are a specia case of BULK transfers. EZ-USB

CONTROL endpoint zero is described in Chapter 7.

Table 6-1. EZ-USB Bulk, Control and Interrupt Endpoints

Endpoint | Direc | Type Size
0 Bidir | Control | 64/64
1 IN Bulk/Int | 64

1 OUT | Bulk 64

2 IN Bulk/Int | 64

2 OUT | Bulk 64
3 IN Bulk/Int | 64

3 OUT | Bulk 64
4 IN Bulk/Int | 64

4 OUT | Bulk 64
5 IN Bulk/Int | 64

5 OUT | Bulk 64
6 IN Bulk/Int | 64

6 OUT | Bulk 64

7 IN Bulk/Int | 64

7 OUT | Bulk 64

The USB specification allows maximum packet sizes of 8, 16, 32 or 64 bytes for bulk

data, and 1-64 bytes for interrupt data. EZ-USB provides the maximum 64 bytes of
buffer space for each of its sixteen endpoints 0-7 IN and 0-7 OUT. Six of the bulk

endpoints, 2-IN, 4-IN, 6-IN, 2-OUT, 4-OUT, and 6-OUT may be paired with the next
consecutively numbered endpoint to provide double-buffering, which allows one data
packet to be serviced by the 8051 while another isin transit over USB. Six endpoint

pairing bits (USBPAIR register) control double buffering.

EZ-USB TRM YV 1.51

Chapter 6. EZ-USB Bulk Transfers

Page 73

The 8051 sets fourteen endpoint valid bits (INO7VAL, OUTO7VAL registers) at
initialization time to tell the EZ-USB core which endpoints are active. The default
CONTROL endpoint zero is aways valid.

Bulk data appearsin RAM. Each bulk endpoint has a reserved 64-byte RAM space, a 7-
bit byte count register, and atwo-bit control and status (CS) register. The 8051 can read
one bit of the CS register to determine ‘ endpoint busy’, and write the other to force an
endpoint STALL condition.

The 8051 should never read or write an endpoint buffer or byte count register while the
endpoint’s busy bit is set.

When an endpoint becomes ready for 8051 service, the EZ-USB core sets an interrupt
request bit. The EZ-USB vectored interrupt system separates the interrupt requests by
endpoint to automatically transfer control to the ISR (Interrupt Service Routine) for the
endpoint requiring service. Chapter 9, “Interrupts’ fully describes this mechanism.

Figure 6-2 illustrates the registers and bits associated with bulk transfers.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 74

Registers Associated with a Bulk IN endpoint
(EP2IN shown as example)

~——— Initialization Data transfer ————
NorvaL [o Ts [+ [s]ali[o] || IN2BUF
Endpoint Valid (1=valid) 64 Byte
Endpoint
USBPAIR ‘ 067 | 045 023‘ i67 ‘ i45 | i23 ‘ Buffer
Endpoint Pairing (1=paired)
INO7IEN| 7 |6 |5 |4[3]2]1]0] IN2BC| |
Interrupt Enable (1=enabled) Byte Count
Busy and Stall Interrupt Control
nacs ofs] | monmo[+ e[« s 2] 0]
Control & Status Interrupt Request (write 1 to clear)
Registers Associated with a Bulk OUT endpoint
(EP40OUT shown as example)
Initialization Data transfer
OUTO7VAL| 7 |6 |5 |a|3]2]1]0] OUT4BUF
Endpoint Valid (1=valid) 64 Byte
Endpoint
USBPAIR ‘ 067 | 045 023‘ i67 ‘ 45 ‘ 23 ‘ Buffer
Endpoint Pairing (1=paired)
OUTO7IEN| 7 |65 [4a|3][2]1]0] OUT4BC| | |
_ Interrupt Enable (1=enabled) _ Byte Count)
Busy and Stall Interrupt Control
ouTACS| els| || outorrg|7[e[s|e]a][z]1]0]
Control & Status Interrupt Request (write 1 to clear)

Figure 6-2. Registers Associated with Bulk Endpoints

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 75

6.2 Bulk IN Transfers

H D H H D
Al E|llc 2 g A AllEll C
|| ol N|IR|I[|T]| Payload A : I DlIN|| R N
N/ o||o|| c|||] o Data . ¥ N/ Dl ol c||| |A
R P[5] : RIIP| 5 K —~
Token Packet Data Packet H/S Pkt Token Packet) \H/S Pk @
(INnBC loaded) EPnIN Interrupt, INNBSY=0 8
g
@ & & @ :
a
H D H D H g
o
D C T
AllE|l C \ Al E|| C A R A T
I[| D||N|| R I | D|| N||R T Payload c "
N| Dl b/ cl| | A N|| p|| D|| C A Data . C B
RIP| 5 K Rl P||5 K z
0 6
Token Packet /S Pkt T Token Packet Data Packet /S Pk
Load INNBC EPnIN Interrupt, INNnBSY=0 J

Figure 6-3. Anatomy of a Bulk IN Transfer

USB bulk “IN” data travels from device to host. The host requests an IN transfer by
issuing an IN token to the EZ-USB core, which responds with data when it isready. The
8051 indicates ‘ready’ by loading the endpoint’ s byte count register. If the EZ-USB core
receives an IN token for an endpoint that is not ready, it responds to the IN token with a
“NAK” handshake.

In the bulk IN transfer illustrated in Figure 6-3, the 8051 has previously loaded an
endpoint buffer with a data packet, and then loaded the endpoint’ s byte count register
with the number of bytes in the packet to arm the next “IN” transfer. This setsthe
endpoint’s BUSY bit. The host issues an IN token @, to which the EZ-USB core
responds by transmitting the datain the IN endpoint buffer @. When the host issues an
ACK @, indicating that the data has been received error-free, the EZ-USB core clears the
endpoint’s BUSY bit and setsitsinterrupt request bit. This notifies the 8051 that the
endpoint buffer isempty. If thisisamulti-packet transfer, the host then issues another
IN token to get the next packet.

If the second IN token @ arrives before the 8051 has had time to fill the endpoint buffer,
the EZ-USB core issues a NAK handshake, indicating ‘busy’ ®. The host continues to

send IN tokens @, @ until the datais ready. Eventually the 8051 fills the endpoint
buffer with data, and then loads the endpoint’ s byte count register (INnBC) with the

number of bytes in the packet ®. Loading the byte count re-arms the given endpoint.
When the next IN token arrives @ the EZ-USB core transfers the next data packet ®.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 76

6.3 Interrupt Transfers

Interrupt transfers are handled just like bulk IN transfers.

The only difference between a bulk endpoint and an interrupt endpoint exists in the
endpoint descriptor, where the endpoint is identified as type “interrupt”, and a polling
interval is specified. The polling interval determines how often the USB host issues IN
tokens to the interrupt endpoint.

The 8051 services an interrupt endpoint exactly the same way as abulk IN endpoint. It
loads data into the endpoint buffer, then loads a byte count. When the data has been
successfully transferred, it gets an interrupt. The EZ-USB device does not know the
difference between an interrupt transfer and a bulk IN transfer.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 77

6.4 EZ-USB Bulk IN Example

Suppose 220 bytes are to be transferred to the host using endpoint 6-IN. Further assume
that a MaxPacketSize of 64 bytes for endpoint 6-1N has been reported to the host during

enumeration. Because the total transfer size exceeds the maximum packet size, the 8051
divides the 220 byte transfer into four transfers of 64, 64, 64 and 28 bytes.

After loading the first 64 bytes into IN6BUF (at 0x7C00), the 8051 loads the byte count
register IN6BC with the value 64. Writing the byte count register instructs the EZ-USB
core to respond to the next host IN token by transmitting the 64 bytes in the buffer. Until
the byte count register isloaded to “arm” the IN transfer, any IN tokens issued by the
host are answered by EZ-USB with NAK (Not-Acknowledge) tokens, telling the USB
host that the endpoint is not yet ready with data. The host continues to issue IN tokens to
endpoint 6-IN until datais ready for transfer—whereupon the EZ-USB core replaces
NAKSs with valid data.

When the 8051 initiates an IN transfer by loading the endpoint’ s byte count register, the
EZ-USB core sets a busy bit to instruct the 8051 to hold off loading IN6BUF until the
USB transfer isfinished. When the IN transfer is complete and successfully
acknowledged, the EZ-USB core resets the endpoint 6-IN busy bit and generates an
endpoint 6-IN interrupt request. 1f the endpoint 6-IN interrupt is enabled, program
control automatically vectors to the data transfer routine for further action (Autovectoring
is enabled by setting AVEN=1, refer to Chapter 9, “Interrupts’).

The 8051 now loads the next 64 bytes into IN6BUF and then loads the EPINBC register
with 64 for the next two transfers. For the last portion of the transfer, the 8051 loads the
final 28 bytesinto IN6BUF, and loads IN6BC with 28. This completes the transfer.

I nitialization Note:

When the EZ-USB chip comes out of RESET, or when the USB host issues a bus reset,
the EZ-USB core “unarms’ IN endpoints 1-7 by setting their busy bitsto 1. Any IN
transfer requests are NAK’ d until the 8051 loads the appropriate INXBC register(s). The
endpoint valid bits are not affected by an 8051reset or a USB reset. Chapter 10, “Reset
and Power Management” describes the various reset conditions in detail.

The EZ-USB core takes care of USB housekeeping chores such as handshake
verification. When an endpoint 6-IN interrupt occurs, the user is assured that the data
loaded by the 8051 into the endpoint buffer was received error-free by the host. The EZ-
USB core automatically checks the handshake information from the host and re-transmits
the data if the host indicates an error by not ACKing.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 78

6.5 Bulk OUT Transfers

USB bulk “OUT” datatravels from host to device. The host requests an OUT transfer by
issuing an OUT token to EZ-USB, followed by a packet of data. The EZ-USB core then
responds with an ACK, if it correctly received the data. If the endpoint buffer is not
ready to accept data, the EZ-USB core discards the host’s OUT data and returns a NAK
token, indicating not ready. In response, the host continues to send OUT tokens and data
to the endpoint until the EZ-USB core responds with an ACK.

H H D H H D
D C D C
Al E|| C Al E|| C
o D|| N|| R A Payload R A o D|| N|| R A Payload R N
U T C C U T C A
- D|| D|| C Data D|| D|| C Data
T rlpls A 1 K T rlpls A 1 K
1 6 0 6 —
Token Packet Data Packet H/S Pk Token Packet Data Packet H/S Pk 8
* o)
OUTNBC loaded b
(OUTNBSY=1) | EPnOUT Interrupt, <
- OUTnBSY=0 %
[a]
1]
(@) (5) & @ © (9 o
1)
H H D H H D e
11
D C D C I
Al E|l C Al E|| C iy
0]
Ol p| n|| rI[|| A Payload R N Ol bl N|| R A Payload R A °
U T C A U T C C >
D|| D|| C Data D|| D|| C Data
T Rl plls A 1 K T Rl pll s A 1 K
0 6 0 6
Token Packet Data Packet /S Pk T Token Packet Data Packet H/S Pk

EPNOUT Interrupt, J

Load OUTNBC (any value), OUTnBSY=0

causes OUTnBSY=1
Figure 6-4. Anatomy of a Bulk OUT Transfer

Each EZ-USB bulk OUT endpoint has a byte count register, which serves two purposes.
The 8051 reads the byte count register to determine how many bytes were received
during the last OUT transfer from the host. The 8051 writes the byte count register (with
any value) to tell the EZ-USB core that it has finished reading bytes from the buffer,
making the buffer available to accept the next OUT transfer. The OUT endpoints come
up (after reset) “armed”, so the byte count register writes are require only for OUT
transfers after the first one.

In the bulk OUT transfer illustrated in Figure 6-4, the 8051 has previously loaded the
endpoint’s byte count register with any value to arm receipt of the next OUT transfer.

L oading the byte count register causes the EZ-USB core to set the OUT endpoint’ s busy
bit to 1, indicating that the 8051 should not use the endpoint’s buffer.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 79

The host issues an OUT token D, followed by a packet of data @,which the EZ-USB

core acknowledges, clears the endpoint’s busy bit and generates an interrupt request @.
This notifies the 8051 that the endpoint buffer contains valid USB data. The 8051 reads
the endpoint’ s byte count register to find out how many bytes were sent in the packet, and
transfers that many bytes out of the endpoint buffer.

In amulti-packet transfer, the host then issues another OUT token @ along with the next
data packet ®. If the 8051 has not finished emptying the endpoint buffer, the EZ-USB

host issues a NAK, indicating ‘busy’ ®. Thedataa ® is shaded to indicate that the EZ-
USB core discards it, and does not over-write the data in the endpoint’s OUT buffer.

The host continues to send OUT tokens @,®,® that are greeted by NAK’s until the
buffer isready. Eventually the 8051 empties the endpoint buffer data, and then loads the

endpoint’s byte count register @ with any value to re-arm the EZ-USB core. Once
armed, when the next OUT token arrives (8) the EZ-USB core accepts the next data
packet @.

Initializing OUT Endpoints

When the EZ-USB chip comes out of reset, or when the USB host issues a bus reset, the
EZ-USB core “arms’ OUT endpoints 1-7 by setting their busy bitsto 1. Therefore they
areinitialy ready to accept one OUT transfer from the host. Subsequent OUT transfers
are NAK’d until the appropriate OUTNBC register is loaded to re-arm the endpoint.

The EZ-USB core takes care of USB housekeeping chores such as CRC checks and data
toggle PIDS. When an endpoint 6-OUT interrupt occurs and the busy bit is cleared, the
user is assured that the data in the endpoint buffer was received error-free from the host.
The EZ-USB core automatically checks for errors and requests the host to re-transmit
dataif it detects any errors using the built-in USB error checking mechanisms (CRC
checks and data toggles).

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 80

6.6 Endpoint Pairing

Bit 5 4 3 2 1 0
Name PR6OUT PR40OUT PR20OUT PRGIN PR4IN PR2IN
Paired 60UT 4 0UT 20UT 6IN 4N 2IN
Endpoints 70UT 50UT 30uUT 7IN 5IN 3IN

Figure 6-5. Endpoint Pairing Bits (in the USBPAIR register)

The 8051 sets endpoint pairing bits to 1 to enable double-buffering of the bulk endpoint
buffers. With double buffering enabled, the 8051 can operate on one data packet while
another is being transferred over USB. The endpoint busy and interrupt request bits
function identically, so the 8051 code requires little code modification to support double
buffering.

When an endpoint is paired, the 8051 uses only the even-numbered endpoint of the pair.
The 8051 should not use the paired odd endpoint. For example, supposeit is desired to
use endpoint 2-IN as a double-buffered endpoint. This pairsthe IN2BUF and INSBUF
buffers, although the 8051 accesses the IN2BUF buffer only. The 8051 sets PR2IN=L1 (in
the USBPAIR register) to enable pairing, sets IN2VAL=1 (in the INO7VAL register) to
make the endpoint valid, and then uses the IN2BUF buffer for al datatransfers. The
8051 should not write the IN3VAL bit, enable IN3 interrupts, access the EP3IN buffer, or
load the IN3BC byte count register.

6.7 Paired IN Endpoint Status

INNBSY =1 indicates that both endpoint buffers are in use, and the 8051 should not load
new IN datainto the endpoint buffer. When INNBSY =0, either one or both of the buffers
isavailable for loading by the 8051. The 8051 can keep an internal count that increments
on EPnIN interrupts and decrements on byte count loads to determine whether one or two
buffers are free. Or, the 8051 can simply check for INNBSY =0 after loading a buffer
(and loading its byte count register to re-arm the endpoint) to determine if the other
buffer is free.

I mportant Note:

If an IN endpoint is paired and it is desired to clear the busy bit for that endpoint, do the
following: (a) write any value to the even endpoint’ s byte count register twice, and (b)
clear the busy bit for both endpointsin the pair. Thisisthe only code difference between
paired and unpaired use of an IN endpoint.

An bulk IN endpoint interrupt request is generated whenever a packet is successfully
transmitted over USB. The interrupt request is independent of the busy bit. If both
buffers are filled and one is sent the busy bit transitions from 1-0; if one buffer isfilled
and then sent the busy bit starts and remains at 0. In either case an interrupt request is
generated to tell the 8051 that a buffer isfree.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 81

6.8 Paired OUT Endpoint Status

OUTNnBSY =1 indicates that both endpoint buffers are empty, and no datais available to
the 8051. When OUTNBSY =0, either one or both of the buffers holds USB OUT data.
The 8051 can keep an internal count that increments on EPnOUT interrupts and
decrements on byte count |oads to determine whether one or two buffers contain data.
Or, the 8051 can simply check for OUTNBSY =0 after unloading a buffer (and loading its
byte count register to re-arm the endpoint) to determine if the “other” buffer contains
data.

6.9 Using Bulk Buffer Memory

Table 6-2. EZ-USB Endpoint 0-7 Buffer Addresses

Endpoint Buffer | Address Mirrored
INOBUF 7F00-7F3F | 1F00-1F3F
OUTOBUF 7ECO-7EFF | 1ECO-1EFF
IN1IBUF 7E80-7EBF | 1E80-1EBF
OUT1BUF 7E40-7E7F | 1E40-1E7F
IN2BUF 7EQ00-7E3F | 1EQQ-1E3F
OUT2BUF 7DCO-7DFF | 1DCO-1DFF
IN3BUF 7D80-7DBF | 1D80-1DBF
OUT3BUF 7D40-7D7F | 1D40-1D7F
INABUF 7D00-7D3F | 1D00-1D3F
OUT4BUF 7CCO-7CFF | 1CCO0-1CFF
INSBUF 7C80-7CBF | 1C80-1CBF
OUT5BUF 7C40-7C7F | 1C40-1C7F
IN6BUF 7C00-7C3F | 1C00-1C3F
OUT6BUF 7BCO-7BFF | 1BCO-1BFF
IN7BUF 7B80-7BBF | 1B80-1BBF
OUT7BUF 7B40-7B7F | 1B40-1B7F

Table 6-2 shows the RAM locations for the sixteen 64-byte buffers for endpoints 0-7 IN
and OUT. These buffers are positioned at the bottom of the EZ-USB register space so
that any buffers not used for endpoints can be reclaimed as general purpose data RAM.
The top of memory for the 8K EZ-USB part is at 0xX1B3F. However, if the endpoints are
allocated in ascending order starting with the lowest numbered endpoints, the higher
numbered unused endpoints can effectively move the top of memory to utilize the unused
endpoint buffer RAM as data memory.

For example, an application that uses endpoint 1-IN, 2-IN/OUT (paired), 4-IN and 4-OUT
can use 0x1B40-0x1CBF as data memory. Chapter 3 gives full details of the EZ-USB
memory map.

Note:
Anchor uploads or downloads to unused bulk memory can be done only at the “Mirrored”
(low) addresses shown in Table 6-2.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 82

6.10 Data Toggle Control

The EZ-USB core automatically maintains the data toggle bits during bulk, control and
interrupt transfers. As explained in Chapter 1, “Introducing EZ-USB”, the toggle bits are
used to detect certain transmission errors so that erroneous data can be re-sent.

In certain circumstances, the host resets its data toggle to “DATAOQ":

After sending a“Clear_Feature: Endpoint Stall” request to an endpoint
After setting a new interface
After selecting a new alternate setting

In these cases the 8051 can directly clear the data toggle for each of the
bulk/interrupt/control endpoints, using the TOGCTL register (Figure 6-5).

TOGCTL Data Toggle Control TFD7
b7 b6 b5 b4 b3 b2 bl b0
Q S R 10 0 EP2 EP1 EPO
R R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 6-5. Bulk Endpoint Toggle Control

The 10 bit selects the endpoint direction (1=IN, 0=OUT), and the EP2-EP1-EPO bits
select the endpoint number. The“Q” bit, which is read-only, indicates the state of the
datatoggle for the selected endpoint. Writing R=1 sets the data toggle to DATAO, and
writing S=1 sets the data toggle to DATAL.

Note:
At the present writing there appears to be no reason to set a datatoggleto DATAL. The
“S’ bit is provided for generality.

To clear an endpoint’s data toggle, the 8051 performs the following sequence:

1. Select the endpoint by writing the value 000dOeee to the TOGCTL register,
where d is the direction and eee is the endpoint number.

2. Clear thetoggle bit by writing the value 001dOeee to the TOGCTL register.

After step 1, the 8051 may read the state of the data toggle by reading the TOGCTL
register and checking bit 7.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 83

6.11 Polled Bulk Transfer Example

The following code illustrates the EZ-USB registers used for a simple bulk transfer. In
this example, 8051 register R1 keeps track of the number of endpoint 2-IN transfers and

register R2 keeps track of the number of endpoint 2-OUT transfers (mod-256). Every
endpoint 2-IN transfer consists of 64 bytes of a decrementing count, with the first byte
replaced by the number of IN transfers and the second byte replaced by the number of

OUT transfers.

1 start: nov SP, #STACK- 1 ; set stack

2 nov dptr, #I N2BUF ; fill EP2IN buffer with

3 nmv r7, #64 ; decrenenting counter

4 fill: nov a, r7

5 nmovx @iptr, a

6 inc dptr

7 dj nz r7,fill

8

9 nov ri, #0 ; rlis INtoken counter

10 nov r2, #0 ; r2 is OUT token counter

11 nmv dptr, #1 N2BC Point to EP2 Byte Count register
12 nmv a, #40h ; 64-byte transfer

13 nmovx @iptr, a ; armthe IN2 transfer

14

15 1 oop: nmv dptr, #1 N2CS ; poll the EP2-1N Status

16 novx a, @lptr

17 jnb acc. 1, servicel N2 ; not busy--service it
18 nmv dptr, #OUT2CS

19 nmovx a, @lptr

20 jb acc. 1,1 oop EP20UT is busy--keep | ooping
21 ;

22 serviceQUT2:

23 inc r2 ; OUT packet counter

24 nmv dptr,#OUT2BC ; | oad byte count register to re-arm
25 nmovx @iptr, a ; (any val ue)

26 sj np | oop

27

28 servicel N2:

29 inc rl ; I N packet counter

30 nmv dptr, #1 N2BUF ; update the first data byte
31 nov a, ril ; in EP2IN buffer

32 nmovx @iptr, a

33 inc dptr ; second byte in buffer

34 nmv a, r2 ; get nunber of OUT packets
35 nmovx @iptr, a

36 nmv dptr, #1 N2BC ; point to EP2IN Byte Count Register
37 nov a, #40h

38 nmovx @iptr, a ; load bc=64 to re-arm | N2

39 sj np | oop

40 ;

41 END

Figure 6-6. Example code for a simple (polled) BULK transfer

The code at lines 2-7 fills the endpoint 2-IN buffer with 64 bytes of a decrementing
count. Two 8-bit counts are initialized to zero at lines 9 and 10. An endpoint 2-IN
transfer is‘armed’ at lines 11-13, which load the endpoint 2-IN byte count register
IN2BC with 64. Then the program enters a polling loop at lines 15-20, where it checks
two flags for endpoint 2 servicing. Lines 15-17 check the endpont 2-IN busy bit in

EZ-USB TRM YV 1.51

Chapter 6. EZ-USB Bulk Transfers

Page 84

IN2CS bit 1. Lines 18-20 check the endpoint 2-OUT busy bit in OUT2CS bit 1. When
busy=1, the EZ-USB core is currently using the endpoint buffers and the 8051 should not
access them. When busy=0, new data is ready for service by the 8051.

For both IN and OUT endpoints, the busy bit is set when the EZ-USB core is using the
buffers, and cleared by loading the endpoint’s byte count register. The byte count value
is meaningful for IN transfers since it tells the EZ-USB core how many bytes to transfer
in response to the next IN token. The 8051 can load any byte count OUT transfers, since
only the act of loading the register is significant—loading OUTnBC arms the OUT
transfer and sets the endpoint’s busy bit.

When an OUT packet arrivesin OUT2BUF, the service routine at lines 22-26 increments
R2, loads the byte count (any value) into OUT2BC to re-arm the endpoint (lines 24-25),
and jumps back to the polling routine. This program does not use OUT2BUF data, it
simply counts the number of endpoint 2-OUT transfers.

When endpoint 2-IN is ready for the 8051 to load another packet into IN2BUF, the
polling loop jumps to the endpoint 2-IN service routine at lines 28-39. First R1is
incremented (line 29). The data pointer is set to IN2BUF at line 30, and register R1 is
loaded into the first byte of the buffer (lines 31-32). The data pointer is advanced to the
second byte of IN2BUF at line 33, and register R2 is loaded into the buffer (lines 34-35).
Finally, the byte count 40H (64 decimal bytes) isloaded into the byte count register
IN2BC to arm the next IN transfer at lines 36-38, and the routine returns to the polling
loop.

6.12 Enumeration Note

The code in this example is complete, and runs on the EZ-USB chip. You may be
wondering about the ‘missing step’, which reports the endpoint characteristics to the host
during the enumeration process. The reason this code runs without any enumeration code
isthat the EZ-USB chip comes on as afully functional USB device with certain
endpoints already configured and reported to the host. Endpoint 2 isincluded in this
default configuration. The full default configuration is described in the chapter on
Enumeration.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 85

6.13 Bulk Endpoint I nterrupts

All USB interrupts activate the 8051 “INT 2” interrupt. If enabled, INT2 interrupts cause
the 8051 to push the current program counter onto the stack, and then execute ajump to
location 0x43, where the programmer has inserted a jump instruction to the interrupt
serviceroutine (ISR). If the AVEN (Autovector Enable) bit is set, the EZ-USB core
inserts a special byte at location 0x45, which directs the jump instruction to a table of

jump instructions which transfer control the endpoint-specific ISR.

Table 6-3. 8051 INT2 Interrupt Vector

L ocation Op-Code Instruction
0x43 02 LIMP
0x44 AddrH

0x45 AddrL*

*Replaced by EZ-USB Core if AVEN=1
The byte inserted by the EZ-USB core at address 0x45 depends on which bulk endpoint

requires service. Table 6-4 shows all INT2 vectors, with the bulk endpoint vectors
unshaded. The shaded interrupts apply to al the bulk endpoints.

Table 6-4. Byte inserted by EZ-USB core at location 0x45 if AVEN=1

Interrupt Inserted Byte at 0x45
SUDAV 0x00
SOF 0x04
SUTOK 0x08
SUSPEND 0x0C
USBRES 0x10
Reserved 0x14
EPO-IN 0x18
EPO-OUT 0x1C
EP1-IN 0x20
EP1-OUT 0x24
EP2-IN 0x28
EP2-OUT 0x2C
EP3-IN 0x30
EP3-OUT 0x34
EP4-IN 0x38
EP4-OUT 0x3C
EP5-IN 0x40
EP5-OUT 0x44
EP6-IN 0x48
EP6-OUT 0x4C
EP7-IN 0x50
EP7-OUT 0x54

The vector values are four bytes apart. This allows the programmer to build ajump table
to each of the interrupt service routines. Note that the jump table must begin on a page

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 86

(256 byte) boundary since the first vector starts at 00. If Autovectoring is not used
(AVEN=0), the IVEC register may be directly inspected to determine the USB interrupt
source.

Each bulk endpoint interrupt has an associated interrupt enable bit (in INO7IEN and
OUTO7IEN), and an interrupt request bit (in INO7IRQ and OUTO7IRQ). The interrupt
request bits are set by the EZ-USB hardware, and must be cleared by software in the
interrupt service routine. 1RQ bitsarecleared by writinga“1”. Sinceal USB
registers are accessed using ‘movx @dptr’ instructions, USB interrupt service routines
must save and restore both data pointers, the DPS register, and the accumulator before
clearing interrupt request bits.

NOTE: Any USB ISR should clear the 8051 INTZ2 interrupt request bit before clearing
any of the EZ-USB endpoint IRQ bits, to avoid losing interrupts. Interrupts are discussed
in more detail in Chapter 9.

Note:

Individual interrupt request bits are cleared by writing “1” to them to simplify code. For
example, to clear the endpoint 2-IN IRQ, ssmply write ‘00000100’ to INO7IRQ. This
will not disturb the other interrupt request bits. Do not read the contents of INO7IRQ,
logical-OR the contents with 02, and write it back. Thiswill clear all other pending
interrupts since you are writing 1’ s to them.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 87

6.14 Interrupt Bulk Transfer Example

This simple (but fully functional) example illustrates the bulk transfer mechanism using
interrupts. In the example program, BULK endpoint 6 is used to loop data back to the
host. Data sent by the host over endpoint 6-OUT is sent back over endpoint 6-IN.

1. Set up the jump table.

CSEG AT 300H ; any page boundary
USB_Junp_Tabl e:

I'jmp SUDAV_| SR ; SETUP Data Avail able

db 0 ; make a 4-byte entry

I'jmp SOF_I SR ; SOF

db 0

Ijmp SUTOK_| SR ; SETUP Data Loadi ng

db 0

Ijmp SUSP_I SR ; dobal Suspend

db 0

I'jmp URES | SR ; USB Reset

db 0

I'jmp SPARE_| SR

db 0

I'jmp EPOI N_I SR

db 0

I'jmp EPOQUT_I| SR

db 0

I'jmp EP1I N_I SR

db 0

I'jmp EP1OUT_I SR

db 0

I'jmp EP2I N_I SR

db 0

I'jmp EP20UT_I SR

db 0

I'jmp EP3I N_I SR

db 0

I'jmp EP3OUT_I| SR

db 0

I'jmp EP41 N_I SR

db 0

I'jmp EP4OUT_| SR

db 0

I'jmp EP5I N_I SR

db 0

I'jmp EP50UT_I| SR

db 0

ljmp EP6I N_I SR ; Used by this exanple

db 0

ljmp EP6OUT_I SR ; Used by this exanple

db 0

I'jmp EP7I N_I SR

db 0

I'jmp EP70UT_I SR

db 0

Figure 6-7. Interrupt Jump Table

Thistable contains all of the USB interrupts, even though only the jumps for endpoint 6
are used for the example. It is convenient to include thistable in any USB application
that uses interrupts. Be sure to locate this table on a page boundary (xx00).

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 88

2. Write the INT2 interrupt vector.

org 43h ; int2 is the USB vector
Ijmp USB Junp_Tabl e ; Autovector will replace byte 45

Figure 6-8. INT2 Interrupt Vector
3. Write the interrupt service routine.

Put it anywhere in memory; the jJump table in step 1 will automatically jump to it.

iEPGOJT_I SR: push dps ; save both dptrs, dps and acc

push dpl

push dph

push dpl 1

push dphl

push acc

nmv a, EXIF ; clear USB I RQ (I NT2)
clr acc. 4

nmov EXIF, a

nov dptr, #OUTO071 RQ

nov a, #01000000b ;a"1" clears the IRQ bit
nmovx @iptr, a ; clear QUT6 int request
setb got _EP6_dat a ; set ny flag

pop acc ; restore vital registers
pop dphl

pop dpl 1

pop dph

pop dpl

pop dps

reti

Figure 6-9. Interrupt Service Routine (ISR) for endpoint 6-OUT

In this example the ISR simply sets the 8051 flag ‘got EP6_data’ to indicate to the
background program that the endpoint requires service. Note that both data pointers and
the DPS (Data Pointer Select) registers must be saved and restored in addition to the
accumul ator.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 89

4, Write the endpoint 6 transfer program.

1 loop: jnb got _EP6_dat a, | oop

2 clr got _EP6_dat a ; clear ny flag

3

4 ; The user sent bytes to OUT6 endpoint using the Anchor Control Panel.
5 Find out how nany bytes were sent.

6

7 nmv dptr, #OUT6BC ; point to OUT6 byte count register
8 nmovx a, @lptr ; get the val ue

9 nmv r7,a ; stash the byte count

10 nov ré, a ; save here al so

11

12 Transfer the bytes received on the OUT6 endpoint to the I N6 endpoint
13 ; buffer. Nunmber of bytes in r6 and r7.

14

15 nmv dptr, #OUT6BUF ; first data pointer points to EP20UT buffer
16 inc dps ; select the second data pointer

17 nmv dptr, #1 N6BUF ; second data pointer points to EP2I N buffer
18 inc dps ; back to first data pointer

19 transfer: nmovx a, @lptr ; get QUT byte

20 inc dptr ; bump the pointer

21 inc dps ; second data pointer

22 nmovx @iptr, a ; put into IN buffer

23 inc dptr ; bump the pointer

24 inc dps ; first data pointer

25 dj nz r7,transfer

26 ;

27 ; Load the byte count into IN6BC. This arns the IN transfer.

28 ;

29 nov dptr, #1 N6BC

30 nmv a, ré ; get other saved copy of byte count

31 nmovx @iptr, a ; this arms the IN transfer

32

33 Load any byte count into OUT6BC. This arns the next OUT transfer

35 nmov dpt r, #OUT6BC
36 nmovx @iptr, a ; use whatever is in acc
37 sj np | oop ; start checking for another OUT6 packet

Figure 6-10. Background program transfers endpoint 6-OUT data to endpoint 6-IN

The main program loop tests the ‘got_EP6_data’ flag, waiting until it is set by the
endpoint 6 OUT interrupt service routine in Figure 6-9. Thisindicates that a new data
packet has arrived in OUT6BUF. Then the service routine is entered, where the flag is
cleared in line 2. The number of bytes received in OUT6BUF is retrieved from the
OUT6BC register (Endpoint 6 Byte Count) and saved in registers R6 and R7 in lines 7-
10.

The dual data pointers are initialized to the source (OUT6BUF) and destination
(IN6BUF) buffers for the data transfer in lines 15-18. These |abels represent the start of
the 64-byte buffers for endpoint 6-OUT and endpoint 6-IN, respectively. Each byteis
read from the OUT6BUF buffer and written to the IN6BUF buffer in lines 19-25. The
saved value of OUT6BC is used as aloop counter in R7 to transfer the exact number of
bytes that were received over endpoint 6-OUT.

When the transfer is complete, the program loads the endpoint 6-IN byte count register

IN6BC with the number of loaded bytes (from R6) to ‘arm’ the next endpoint 6-IN
transfer in lines 29-31. Finaly, the 8051 loads any value into the endpoint 6 OUT byte

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 90

count register OUT6BC to arm the next OUT transfer in lines 35-36. Then the program
loops back to check for more endpoint 6-OUT data.

5. Initialize the endpoints and enable the interrupts.

start: nov SP, #STACK- 1 ; set stack

; Enable USB interrupts and Autovector

nmv dptr, #USBBAV ; enabl e Autovector

nmovx a, @lptr

seth acc. 0 ; AVEN bit is bit 0

nmovx @iptr, a

nmv dptr, #OUTO71 EN ; 'EPO-7 OUT int enables' register

nmv a, #01000000b ; set bit 6 for EP6OUT interrupt enable
nmovx @iptr, a ; enabl e EP6QUT interrupt

Enabl e I NT2 and 8051 gl obal interrupts

setb ex2 ; enable int2 (USB interrupt)
setb EA ; enable 8051 interrupts
clr got _EP6_dat a ; clear ny flag

Figure 6-11. Initialization routine

The initialization routine sets the stack pointer, and enables the EZ-USB Autovector by
setting USBBAV.0to 1. Then it enables the endpoint 6-OUT interrupt, all USB
interrupts (INT2), and the 8051 global interrupt (EA) and finally clears the flag indicating
that endpoint 6-OUT requires service.

Once this structure is put into place, it is quite easy to service any or al of the bulk
endpoints. To add service for endpoint 2-IN, for example, simply write an endpoint 2-IN
interrupt service routine with starting address EP2IN_ISR (to match the address in the
jump tablein step 1), and add its valid and interrupt enable bits to the ‘init’ routine.

6.15 Enumeration Note

The code in this example is complete, and runs on the EZ-USB chip. Y ou may be
wondering about the ‘missing step’, which reports the endpoint characteristics to the host
during the enumeration process. The reason this code runs without any enumeration code
isthat the EZ-USB chip comes on as a fully functional USB device with certain
endpoints already configured and reported to the host. Endpoint 6 isincluded in this
default configuration. The full default configuration is described in the chapter on
Enumeration.

Portions of the above code are not necessary for the default configuration (such as setting
the endpoint valid bits) but the code isincluded to illustrate all of the EZ-USB registers
used for bulk transfers.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 91

6.16 The Autopointer

Bulk endpoint data is available in 64-byte buffersin EZ-USB RAM. In somecasesit is
preferable to access bulk data as a FIFO register rather than asa RAM. The EZ-USB
core provides a specia data pointer which automatically increments when datais
transferred. Using this Autopointer, the 8051 can access any contiguous block of internal
EZ-USB RAM asaFIFO.

AUTOPTRH Autopointer Address High 7FE3
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 All A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTOPTRL Autopointer AddressLow 7FE4
b7 b6 b5 b4 b3 b2 bl b0
A7 AB A5 A4 A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTODATA Autopointer Data TFES5
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

Figure 6-12. Autopointer Registers

The 8051 first loads AUTOPTRH and AUTOPTRL with aRAM address (for example
the address of a bulk endpoint buffer). Then asthe 8051 reads or writes data to the data
register AUTODATA, the addressis supplied by AUTOPTRH/L, which automatically
increments after every read or write to the AUTODATA register. The AUTOPTRH/L
registers may be written or read at any time. These registers maintain the current pointer
address, so the 8051 can read them to determine where the next byte will be read or

written.

The 8051 code example in Figure 6-13 uses the Autopointer to transfer a block of eight

data bytes from the endpoint 4 OUT buffer to internal 8051 memory.

EZ-USB TRM YV 1.51

Chapter 6. EZ-USB Bulk Transfers

Page 92

Init: nmv dptr, #AUTOPTRH

nmv a, #Hl GH(OUT4BUF) ; Hi gh portion of OUT4BUF buffer
nmovx @iptr, a ;. Load AUTOPTRH
nmv dptr, #AUTOPTRL
nmv a, #LON QUT4BUF) ; Low portion of OUT4BUF buffer address
nmovx @iptr, a ; Load AUTOPTRL
nmv dptr, #AUTODATA ; point to the ‘fifo’ register
nmv r0, #80H ; store data in upper 128 bytes of 8051 RAM
nmv r2, #8 ; loop counter
| oop: nmovx a, @lptr ; get a ‘fifo' byte
nov @0, a ; store it
inc ro ; bunmp destination pointer
; (NOTE: no ‘inc dptr’ required here)
dj nz r2,1 oop ; do it eight times

Figure 6-13. Use of the Autopointer

As the comment in the penultimate line indicates, the Autopointer saves an “inc dptr”
instruction which would be necessary if one of the 8051 data pointers were used to access
the OUT4BUF RAM data. Thisimproves the transfer time.

Fastest bulk transfer speed in and out of EZ-USB bulk buffers is achieved when the
Autopointer is used in conjunction with the EZ-USB Fast Transfer mode.

As described in Chapter 8, “EZ-USB Isochronous Transfers’, the EZ-USB core provides
amethod for transferring data directly between an internal FIFO and external memory in
two 8051 cycles (333 ns). The fast transfer mode is active for bulk data when:

The 8051 sets FBLK=1 in the FASTXFR register, enabling fast bulk transfers,
The 8051 DPTR points to the AUTODATA register, and
The 8051 executes a‘movx a,@dptr’ or a‘movx @dptr,a instruction.

The 8051 code example in Figure 6-14 shows a transfer loop for moving 64 bytes of
external FIFO data into the endpoint 4-IN buffer. The FASTXFR register bits are
explained in Chapter 8, “EZ-USB Isochronous Transfers”.

Note:

The Autopointer works only with internal program/data RAM. It does not work with
memory outside the chip, or with internal RAM that is made available when
ISODISAB=1. See Section 8.9.1 on page 133 for a description of the ISODISAB hit.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 93

nmv dptr, #FASTXFR ; set up the fast BULK transfer node

nov a, #01000000b ; FBLK=1, RPOL=0, RML-0 = 00

nmovx @iptr, a ; load the FASTXFR register
Init: nmv dptr, #AUTOPTRH

nmv a, H GH(I NdBUF) ; High portion of | NABUF

nmovx @iptr, a ;. Load AUTOPTRH

nmv dptr, #AUTOPTRL

nmv a, LON | dBUF) ; Low portion of | NABUF buffer address

nmovx @iptr, a ; Load AUTOPTRL

nmv dptr, #AUTODATA ; point to the ‘fifo' register

nmv r7, #8 ; r7 is loop counter, 8 bytes per |oop
| oop: nmovx @iptr, a ; (2) wite IN‘fifo' using byte from external bus

nmovx @iptr, a ; (2) again

nmovx @iptr, a ; (2) again

nmovx @iptr, a ; (2) again

nmovx @iptr, a ; (2) again

nmovx @iptr, a ; (2) again

nmovx @iptr, a ; (2) again

nmovx @iptr, a ; (2) again

dj nz r7,1 oop ; (3) do eight nore, ‘r7' tines

Figure 6-14. 8051 code to transfer external data to a Bulk IN Buffer

This transfer loop takes 19 cycles per loop times 8 passes, or 22 microseconds (152
cycles). A USB bulk transfer of 64 bytes takes over 42 microseconds

(64 * 8 * 83ns) of bustimeto transfer the data bytes to or from the host. This calculation
neglects USB overhead time.

From this ssimple example it is clear that by using the Autopointer and the EZ-USB Fast
Transfer mode, the 8051 can transfer data in and out of EZ-USB endpoint buffers
significantly faster than the USB can transfer it to and from the host. This means that the
EZ-USB chip should never be a speed bottleneck in a USB system. It aso gives the 8051
ample time for other processing duties between endpoint buffer loads.

The Autopointer can be used to quickly move data anywhere in RAM, not just the bulk
endpoint buffers. For example, it can be used to good effect in an application that calls

for transferring a block of datainto RAM, processing the data, and then transferring the
data to a bulk endpoint buffer.

EZ-USB TRM V 1.51 Chapter 6. EZ-USB Bulk Transfers Page 94

7 EZ-USB Endpoint Zero

7.1 Introduction

Endpoint Zero has specia significance in aUSB system. It isa CONTROL endpoint,
and isrequired by every USB device. Only CONTROL endpoints accept special SETUP
tokens that the host uses to signal transfers that deal with device control. The USB host
sends a repertoire of standard device requests over endpoint zero. These standard
requests are fully defined in Chapter 9 of the USB Specification. This chapter describes
how the EZ-USB chip handles endpoint zero requests.

Because the EZ-USB chip can enumerate without firmware (Chapter 5,
“Enumeration/ReNumeration”), the EZ-USB core contains logic to perform enumeration
onitsown. Thishardware assist of endpoint zero operations is made available to the
8051, simplifying the code required to service device requests. This chapter deals with
8051 control of endpoint zero (ReNum=1, Chapter 5), and describes EZ-USB resources
such as the Setup Data Pointer that simplify 8051 code that handles endpoint zero
reguests.

Endpoint zero isthe only CONTROL endpoint in the EZ-USB chip. Although
CONTROL endpoints are “bi-directional” the EZ-USB chip provides two 64-byte
buffers, INOBUF and OUTOBUF, which the 8051 handles exactly like bulk endpoint
buffers for the data stages of a CONTROL transfer. A second 8-byte buffer,
SETUPDAT, which is unique to endpoint zero, holds data that arrives in the SETUP
stage of a CONTROL transfer. Thisrelievesthe 8051 programmer of having to keep
track of the three CONTROL transfer phases—SETUP, DATA and STATUS. The EZ-
USB core also generates separate interrupt requests for the various transfer phases,
further smplifying code.

The INOBUF and OUTOBUF buffers have two special properties that result from being
used by CONTROL endpoint zero:

= Endpoints O-IN and 0-OUT are always valid, so the valid bits (LSB of INO7VAL
and OUTO7VAL registers) are permanently set to 1. Writing any value to these
two bits has no effect, and reading these bits alwaysreturnsa 1.

= Endpoint O cannot be paired with endpoint 1, so there is no pairing bit in the
USBPAIR register for endpoints O or 1.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 95

7.2 Control Endpoint EPO

<«—SETUP Stage———»

S D C
E é El g A|| 8bytes || R A
T ol pll ¢ T|| Setup C C
U Rl pll s A Data 1 K
P 0 6
Token Packet Data Packet H/S Pkt
SUTOK Interrupt L SUDAV Interrupt
Core sets HSNAK=1
< DATA Stage >
NERIE <l I <] <l T
I'|| D|| NI|R T Payload c c I||D||N||R T Payload c c
N|| D|| D|| C Data N|| D|| D|| C Data
Rl plls A 1 K rRilpl 5 A 1 K
1 6 0 6
Token Packet Data Packet H/S Pk Token Packet Data Packet /S Pkt
L EPO-IN Interrupt EPO-IN Interrupt J
< STATUS Stage >
D|| C D|| C
ol Al Bl Sl Al rI| || SN o AlEICI Al r A
D||N|| R Y D|| N|| R
U T||C A U T||C C
T/ Pl Sl Al 2l || N & 7/ DI DI Sl Al 1 K
R|| P|| 5 116 C R|| Pl 5 16
Token Packet J \Data Pkt/ \H/S Pk T Token Packet) \Data Pky (H/S Pk
8051 clears HSNAK bit (writes 1 to it)

or sets the STALL bit.
Figure 7-1. AUSB Control Transfer. This one has a data stage.

Endpoint zero accepts a special SETUP packet, which contains an eight-byte data
structure that provides host information about the CONTROL transaction. CONTROL
transfers include afinal STATUS phase, constructed from standard PIDS (IN/OUT,
DATA1 and ACK/NAK).

Some CONTROL transactions include al required datain their eight-byte SETUP Data
packet. Other CONTROL transactions require more OUT data than will fit into the eight
bytes, or require IN data from the device. These transactions use standard bulk-like
transfers to move the data. Note in Figure 7-1 that the “DATA Stage” looks exactly like
abulk transfer. Aswith BULK endpoints, the endpoint zero byte count registers must be
loaded to ACK the data transfer stage of a CONTROL transfer.

The STATUS stage consists of an empty data packet with the opposite direction of the

data stage, or an IN if there was no data stage. This empty data packet gives the device a
chanceto ACK or NAK the entire CONTROL transfer. The 8051 writesa“1” to abit

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 96

called HSNAK (Handshake NAK) to clear it and instruct the EZ-USB core to ACK the
STATUS stage.

The HSNAK hit is used to hold off completing the CONTROL transfer until the device
has had time to respond to arequest. For example, if the host issues a Set_Interface
request, the 8051 performs various housekeeping chores such as adjusting internal modes
and re-initializing endpoints. During this time the host issues handshake (STATUS
stage) packets to which the EZ-USB core responds with NAK’s, indicating “busy”.
When the 8051 completes the desired operation, it sets HSNAK=1 (by writinga“1” to
the bit) to terminate the CONTROL transfer. This handshake prevents the host from
attempting to use a partially configured interface.

To perform an endpoint stall for the DATA or STATUS stage of an endpoint zero
transfer (the SETUP stage can never stall), the 8051 must set both the STALL and
HSNAK bits for endpoint zero.

Some CONTROL transfers do not have a DATA stage. Therefore the 8051 code that
processes the SETUP data should check the length field in the SETUP data (in the 8-byte
buffer at SETUPDAT) and arm endpoint zero for the DATA phase (by loading INOBC or
OUTOBC) only if the length is non-zero.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 97

Two 8051 interrupts provide notification that a SETUP packet has arrived, as shown in
Figure 7-2.

A
8 bytes SETUPDAT
Setup BbRAM
Data ytes

* sutok * supav

Interrupt Interrupt

Figure 7-2. The two interrupts associated with EPO CONTROL transfers

The EZ-USB core sets the SUTOKIR bit (SETUP Token Interrupt Request) when the
EZ-USB core detects the SETUP token at the beginning of a CONTROL transfer. This
interrupt is normally used only for debug.

The EZ-USB core sets the SUDAVIR bit (Setup Data Available Interrupt Request) when
the eight bytes of SETUP data have been received error-free and transferred to eight EZ-
USB registers starting at SETUPDAT. The EZ-USB core takes care of any re-triesif it
finds any errorsin the SETUP data. These two interrupt request bits are set by the EZ-
USB core, and must be cleared by firmware.

An 8051 program responds to the SUDAYV interrupt request by either directly inspecting
the eight bytes at SETUPDAT or by transferring them to alocal buffer for further
processing. Servicing the SETUP data should be a high 8051 priority, since the USB
specification stipulates that CONTROL transfers must aways be accepted and never
NAK’ed. Itistherefore possible that a CONTROL transfer could arrive while the 8051 is
still servicing a previous one. In this case the previous CONTROL transfer service
should be aborted and the new one serviced. The SUTOK interrupt gives advance
warning that anew CONTROL transfer is about to over-write the eight SETUPDAT
bytes.

If the 8051 stalls endpoint zero (by setting the EPOSTALL and HSNAK bitsto 1), the
EZ-USB core automatically clears this stall bit when the next SETUP token arrives.

Like all EZ-USB interrupt requests, the SUTOKIR and SUDAV IR bits can be directly

tested and reset by the CPU (they are reset by writing a“1”). Thusif the corresponding
interrupt enable bits are zero, the interrupt request conditions can still be directly polled.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 98

Figure 7-3 shows the EZ-USB registers that deal with CONTROL transactions over EPO.

Registers Associated with Endpoint Zero
For handling SETUP transactions

Initialization Data transfer ———
vssen [[| | [[1] [o] SRR syesat
SETUP Data
Global Enable:

T=Setup Token SUTOKIE
D=Setup Data SUDAVIE

Interrupt Control
SUDPTRH ‘15‘14‘13‘12‘11‘10‘ 9 ‘ 8‘
USBIRQ \ T \ D \
Interrupt Request SUDPTRL ‘ 7 ‘ 6 ‘ 5 ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0 ‘
T=Setup Token SUTOKIR
D=Setup Data SUDAVIR

Figure 7-3. Registers associated with EPO Control Transfers

These registers augment those associated with normal bulk transfers over endpoint zero,
which are described in Chapter 6, “Bulk Transfers’.

Two bitsin the USBIEN (USB Interrupt Enable) register enable the SETUP Token
(SUTOKIE) and SETUP Data (SUDAVIE) interrupts. The actual interrupt request bits
arein the USBIRQ (USB Interrupt Requests) register. They are called STOKIR (SETUP
Token Interrupt Request) and SUDAVIR (SETUP Data Interrupt Request).

The EZ-USB core transfers the eight SETUP bytes into eight bytes of RAM at
SETUPDAT. A sixteen bit pointer, SUDPTRHY/L gives hardware assistance for handling
CONTROL IN transfers, in particular the USB “Get Descriptor” requests described |ater
in this chapter.

7.3 USB Requests

The USB Specification defines a set of Standard Device Requests in Chapter 9, “USB
Device Framework”. When the 8051 isin control (ReNum=1), the EZ-USB core handles
one of these requests (Set Address) directly, and relies on the 8051 to support the others.
The 8051 acts on device requests by decoding the eight bytes contained in the SETUP
packet. Table 7-1 shows the meaning of these eight bytes.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 99

Table 7-1. The Eight Bytesin a USB SETUP Packet

Byte | Field M eaning

0 bmRequestType Request Type, Direction and Recipient

1 bRequest The actual request (see Table 7-2)

2 wValuel Word-size value, varies according to bRequest

3 wValueH

4 windexL Word-size field, varies according to bRequest

5 windexH

6 wlL engthL Number of bytesto transfer if there is a data phase
7 wL engthH

The “Byte” column shows the byte offset from SETUPDAT. The “Field” column shows
the different bytes in the request, where the ‘bm’ prefix means bit-map, ‘b’ means byte,

and ‘w’ means word (16 bits).

Table 7-2 (page 101) shows the different values defined for bRequest, and how the 8051
responds to each request. The remainder of this chapter describes each of the Table 7-2

requests in detail.

Note: Table 7-2 applies when ReNum=1, which signifies that the 8051, and not the EZ-
USB core, handles device requests. Table 5-2 on page 53 shows how the core handles

each of these device requests when ReNum=0, for example when the chip isfirst

powered and the 8051 is not running.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero

Page 100

Table 7-2. How the 8051 Handles USB Device Requests (ReNum=1)

bRequest | Name Action 8051 Response
0x00 Get Status SUDAV Interrupt Supply RemWU, SelfPwr or Stall bits
0x01 Clear Feature SUDAV Interrupt Clear RemWU, SelfPwr or Stall bits
0x02 (reserved) none Stall EPO
0x03 Set Feature SUDAV Interrupt Set RemWU, SelfPwr or Stall bits
0x04 (reserved) none Stall EPO
0x05 Set Address Update FNADDR none

register
0x06 Get Descriptor SUDAV Interrupt Supply table data over EPO-IN
0x07 Set Descriptor SUDAV Interrupt Application dependent
0x08 Get Configuration | SUDAV Interrupt Send current configuration number
0x09 Set Configuration SUDAV Interrupt Change current configuration
O0x0A Get Interface SUDAV Interrupt Supply aternate setting No. from RAM
0x0B Set Interface SUDAV Interrupt Change alternate setting No.
0x0C Sync Frame SUDAV Interrupt Supply aframe number over EPO-IN
Vendor Requests
0xA0 (Anchor Load) Up/Download RAM | ---
OxA1 — OXAF SUDAV Interrupt Reserved by Anchor Chips
All except 0xAQ SUDAV Interrupt Depends on application

In the ReNumerated condition (ReNum=1), the EZ-USB core passes all USB requests
except Set Address onto the 8051 via the SUDAV interrupt. This, in conjunction with
the USB disconnect/connect feature, allows a completely new and different USB device
(yours) to be characterized by the downloaded firmware.

The EZ-USB core implements one vendor-specific request, namely “Anchor Load”,
OxAO0. (The bRequest value of OxAOQ isvalid only if byte O of the request,
bmRequestType, is also ‘x10xxxxx”, indicating a vendor-specific request.) The load

request isvalid at all times, so even after ReNumeration the load feature may be used. If
your application implements vendor-specific USB requests, and you do not wish to use

the Anchor Load feature, be sure to refrain from using the bRequest value OxAO for your
custom requests. The Anchor Load feature is fully described in Chapter 5, “Enumeration

and ReNumeration”.

Note:

To avoid future incompatibilities, vendor requests AO-AF (hex) are reserved by Anchor

Chips.

EZ-USB TRM YV 1.51

Chapter 7. EZ-USB Control Endpoint Zero

Page 101

7.3.1 Get Status

The USB Specification version 1.0 defines three USB status requests. A fourth request,
to an interface, is indicated in the spec as “reserved”. The four status requests are:

1. Remote Wakeup (Device reguest)
2. Self-Powered (Device request)
3. Stall (Endpoint request)

4. Interface request (“reserved”)

The EZ-USB core activates the SUDAV interrupt request to tell the 8051 to decode the
SETUP packet and supply the appropriate status information.

8 bytes SETUPDAT
etup 8 RAM

Data bytes

4 supav

Interrupt

Bytes

INOBUF

64-byte
Buffer

INOBC

Figure 7-4. Data flow for a Get_Satus Request

AsFigure 7-4 illustrates, the 8051 responds to the SUDAYV interrupt by decoding the
eight bytes the EZ-USB core has copied into RAM at SETUPDAT. The 8051 answersa
Get_Status request (bRequest=0) by loading two bytes into the INOBUF buffer and
loading the byte count register INOBC with the value 2. The EZ-USB core transmits

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 102

these two bytesin response to an IN token. Finaly, the 8051 clears the HSNAK hit (by

writing 1 to it) to instruct the EZ-USB core to ACK the status stage of the transfer.

The following tables show the eight SETUP bytes for Get_Status requests.

Table 7-3. Get Satus-Device (Remote Wakekup and Self-Powered bits)

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x80 IN, Device

1 bRequest 0x00 “Get Status’ Load two bytesinto INOBUF

2 wValuel 0x00

3 wValueH 0x00 Byte O : bit 0 = Salf Powered hit
4 wlndexL 0x00 . bit 1 = Remote Wakeup
5 windexH 0x00 Bytel: zero

6 wLengthL 0x02 Two bytes requested

7 wLengthH 0x00

Get_Status-Device queries the state of two bits, Remote Wakeup and Self-Powered.

The Remote Wakeup bit indicates whether or not the device is currently enabled to
request remote wakeup. (Remote wakeup is explained in Chapter 11, “Reset and Power
Management”). The Self-Powered bit indicates whether or not the device is self-powered

(as opposed to USB bus powered).

The 8051 returns these two bits by loading two bytes into INOBUF, and then loading a
byte count of two into INOBC.

EZ-USB TRM YV 1.51

Chapter 7. EZ-USB Control Endpoint Zero

Page 103

Table 7-4. Get Satus-Endpoint (Stall bits)

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x82 IN, Endpoint Load two bytesinto INOBUF

1 bReguest 0x00 “Get Status’ Byte 0 : bit 0 = Sall bit for EP(n)
2 wVauelL 0x00 Byte1: zero

3 wValueH 0x00

4 wlindexL EP Endpoint Number EP(n):

5 windexH 0x00 0x00-0x07: OUTO-OUT7

6 wLengthL | 0x02 Two bytes requested | 0x80-0x87: INO-IN7

7 wLengthH 0x00

Each bulk endpoint (IN or OUT) hasa STALL bit inits Control and Status register (bit
0). If the CPU setsthis bit, any requests to the endpoint return a STALL handshake
rather than ACK or NAK. The Get Status-Endpoint request returns the STALL state for
the endpoint indicated in byte 4 of the request. Note that bit 7 of the endpoint number EP
(byte 4) specifies direction.

Endpoint zero isa CONTROL endpoint, which by USB definition is bi-directional.
Therefore it has only one stall bit.

About STALL

The USB STALL handshake indicates that something unexpected has happened. For
instance, if the host requests an invalid alternate setting or attempts to send data to a non-
existent endpoint, the device responds with a STALL handshake over endpoint zero
instead of ACK or NAK.

Stalls are defined for all endpoint types except ISOCHRONOUS, which do not employ
handshakes. Every EZ-USB bulk endpoint hasits own stall bit. The 8051 sets the stall
condition for an endpoint by setting the stall bit in the endpoint’s CS register. The host
tells the 8051 to set or clear the stall condition for an endpoint using the Set_Feature/Stall
and Clear_Feature/Stall requests.

An example of the 8051 setting a stall bit would be in a routine that handles endpoint
zero device requests. If an undefined or non-supported request is decoded, the 8051
should stall EPO. (EPO has a single stall bit because it is a bi-directional endpoint.)

Once the 8051 stalls an endpoint, it should not remove the stall until the host issues a
Clear_Feature/Stall request. An exception to thisrule is endpoint 0, which reports a stall
condition only for the current transaction, and then automatically clears the stall
condition. This prevents endpoint O, the default CONTROL endpoint, from locking out
device requests.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 104

Table 7-5. Get Satus-Interface

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x81 IN, Interface Load two bytesinto INOBUF
1 bRequest 0x00 “Get Status’ Byte O : zero

2 wValuel 0x00 Byte1: zero

3 wValueH 0x00

4 windexL 0x00

5 windexH 0x00

6 wLengthL 0x02 Two bytes requested

7 wLengthH 0x00

Get_Status/Interface is easy: the 8051 returns two zero bytes through INOBUF and clears
the HSNAK bit. The requested bytes are shown as “Reserved (Reset to zero)” in the

USB specification.

EZ-USB TRM YV 1.51

Chapter 7. EZ-USB Control Endpoint Zero

Page 105

7.3.2 Set Feature

Set Feature is used to enable remote wakeup or stall an endpoint. No data stageis
required.

Table 7-6. Set Feature-Device (Set Remote Wakeup Bit)

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x00 OUT, Device Set the Remote Wakeup bit
1 bRequest 0x03 “ Set Feature”
2 wValueL 0x01 Feature Selector:
Remote Wakeup
3 wValueH 0x00
4 windexL 0x00
5 windexH 0x00
6 wLengthL 0x00
7 wLengthH 0x00

The only Set_Feature/Device request presently defined in the USB specification isto set
the remote wakeup bit. Thisisthe same bit reported back to the host as aresult of a Get
Status-Device request (Table 7-3). The host uses this bit to enable or disable remote
wakeup by the device.

Table 7-7. Set Feature-Endpoint (Stall)

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x02 OUT, Endpoint Set the STALL bit for the indicated
1 bRequest 0x03 “Set Feature” endpoint:
2 wValueL 0x00 Feature Selector:
STALL
3 wValueH 0x00
4 windexL EP EP:
5 windexH 0x00 0x00-0x07: OUTO-OUT7
6 wLengthL 0x00 0x80-0x87: INO-IN7
7 wLengthH 0x00

The only Set_Feature/Endpoint request presently defined in the USB specification isto
stall an endpoint. The 8051 should respond to this request by setting the stall bit in the
Control and Status register for the indicated endpoint EP (byte 4 of the request). The
8051 can either stall an endpoint on its own, or in response to the device request.
Endpoint stalls are cleared by the host Clear_Feature/Stall request.

The 8051 should respond to the Set_Feature/Stall request by performing the following
steps:

1. Setthestal bit in the indicated endpoint’s CS register.
2. Reset the datatoggle for the indicated endpoint.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 106

3. For an IN endpoint, clear the busy bit in the indicated endpoint’s CS register.

4. For an OUT endpoint, load any value into the endpoint’s byte count register.

5. Clear the HSNAK bhit in the EPOCS register (by writing 1 to it) to terminate the
Set_Feature/Stall CONTROL transfer.

Steps (3) and (4) restore the stalled endpoint to its default condition, ready to send or
accept data after the stall condition is removed by the host (using a Clear_Feature/Stall
request). These steps are also required when the host sends a“ Set_Interface” request.

Data Toggles

The EZ-USB core automatically maintains the endpoint toggle bits to insure data
integrity for USB transfers. The 8051 should directly manipulate these bits only for a
very limited set of circumstances:

1. Set Feature/Stall
2. Set_Configuration
3. Set_Interface

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 107

7.3.3 Clear Feature

Clear Feature is used to disable remote wakeup or to clear a stalled endpoint.

Table 7-8. Clear Feature-Device (Clear Remote Wakeup Bit)

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x00 OUT, Device Clear the Remote Wakeup bit
1 bRequest 0x01 “Clear Feature’
2 wValueL 0x01 Feature Selector:
Remote Wakeup
3 wValueH 0x00
4 windexL 0x00
5 windexH 0x00
6 wLengthL 0x00
7 wLengthH 0x00

Table 7-9. Clear Feature-Endpoint (Clear Sall)

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x02 OUT, Endpoint Clear the STALL hit for the
1 bRequest 0x01 “Clear Feature’ indicated endpoint:
2 wValueL 0x00 Feature Selector:
STALL
3 wValueH 0x00
4 windexL EP EP(n):
5 windexH 0x00 0x00-0x07: OUTO-OUT7
6 wLengthL 0x00 0x80-0x87: INO-IN7
7 wLengthH 0x00

If the USB device supports remote wakeup (as reported in its descriptor table when the
device is enumerated), the Clear Feature/Remote Wakeup request disables the wakeup

capability.

The Clear_Feature/Stall removes the stall condition from an endpoint. The 8051 should
respond by clearing the stall bit in the indicated endpoint’s CS register.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 108

7.3.4 Get Descriptor

During enumeration the host queries a USB device to learn its capabilities and
requirements using Get_Descriptor requests. Using tables of descriptors, the device
sends back (over EPO-IN) such information as what device driver to load, how many
endpointsit has, its different configurations, alternate settings it may use, and informative
text strings about the device.

The EZ-USB core provides a specia Setup Data Pointer to simplify 8051 service for
Get_Descriptor requests. The 8051 loads this 16-bit pointer with the beginning address
of the requested descriptor, clears the HSNAK bit (by writing “1” to it), and the EZ-USB

core does the rest.

<«—SETUP Stage——»

S Al el ¢ D C
Ell o[N[R|| |2 B2xes | RIf] A SETUPDAT
T oll ol ¢ T|| Setup C © 8 RAM
U A Data 1 K
P R{| P|| 5 0 6 bytes
Token Packet Data Packet H/S Pk
T—SUDAV Interrupt
< DATA Stage >
Al E|lc 2 g A Al E\C ,Ii g A
I || D|| N|| R T Payload c c ||| D|| N|| R T Payload c c
N|| D|| D|| C Data N|| D|| D|| C Data
Rl | s|l| 4 L X r(P| 5[l A L X
1 6 0 6
Token Packet Data Packet \ H/S Pk Token Packet Data Pagket /S Pk
EPOIN EPOIN
Interrupt Interrupt
™= 64 bytes
27 bytes/

Figure 7-5. Using the Setup Data Pointer (SUDPTR) for Get_Descriptor requests

Figure 7-5 illustrates use of the Setup Data Pointer. This pointer isimplemented as two
registers, SUDPTRH and SUDPTRL. Most Get_Descriptor requests involve transferring
more data than will fit into one packet. In the Figure 7-5 example, the descriptor data
consists of 91 bytes.

EZ-USB TRM YV 1.51

Chapter 7. EZ-USB Control Endpoint Zero

Page 109

The CONTROL transaction starts in the usual way, with the EZ-USB core transferring
the eight bytes in the SETUP packet into RAM at SETUPDAT and activating the
SUDAY interrupt request. The 8051 decodes the “ Get_Descriptor” request, and responds
by clearing the HSNAK bit (by writing “1” to it), and then loading the SUDPTR registers
with the address of the requested descriptor. Loading the SUDPTRL register causes the
EZ-USB core to automatically respond to two IN transfers with 64 bytes and 27 bytes of
data using SUDPTR as a base address, and then to respond to (ACK) the STATUS stage.

The usual endpoint zero interrupts, SUDAYV and EPOIN, remain active during this
automated transfer. The 8051 normally disablse these interrupts since the transfer
requires no 8051 intervention.

Three types of descriptors are defined, Device, Configuration and String.

7.3.4.1 Get Descriptor-Device

Table 7-10. Get Descriptor-Device

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x80 IN, Device Set SUDPTR H-L to start of

1 bRequest 0x06 “Get_Descriptor” Device Descriptor tablein RAM
2 wValuel 0x00

3 wValueH 0x01 Descriptor Type:

Device

windexL 0x00
wlndexH 0x00
wLengthL LenL
wLengthH LenH

~N OO0~

Asillustrated in Figure 7-5, the 8051 loads the two-byte SUDPTR with the starting
address of the Device Descriptor table. When SUDPTRL is loaded, the EZ-USB core
performs the following operations:

1. Reads the requested number of bytes for the transfer from bytes 6 and 7 of the
SETUP packet (LenL and LenH in Table 7-10).

2. Readsthe requested string’ s descriptor to determine the actual string length.

3. Sendsthe smaller of (@) the requested number of bytes or (b) the actual number of
bytesin the string, over INOBUF using the Setup Data Pointer as a data table index.
This constitutes the second phase of the three-phase CONTROL transfer. The core
Packetizes the data into multiple data transfers as necessary.

4. Automaticaly checksfor errors and re-transmits data packets if necessary.

5. Respondsto the third (handshake) phase of the CONTROL transfer to terminate the
operation.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 110

The Setup Data Pointer can be used for any Get_Descriptor request, for example
Get_Descriptor-String. It can also be used for vendor-specific requests (that you define),
as long as bytes 6-7 contain the number of bytesin the transfer (for step 1, above).

It is possible for the 8051 to do “manua” CONTROL transfers, directly loading the
INOBUF buffer with the various packets and keeping track of which SETUP phaseisin
effect. Thiswould be agood USB training exercise, but not necessary due to the
hardware support built into the EZ-USB core for CONTROL transfers.

For DATA stage transfers of fewer than 64 bytes, moving the data into the INOBUF
buffer and then loading the EPOINBC register with the byte count would be equivalent to
loading the Setup Data Pointer. However this would waste 8051 overhead since the
Setup Data Pointer requires no byte transfers into the INOBUF buffer.

7.3.4.2 Get Descriptor-Configuration

Table 7-11. Get Descriptor-Configuration

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x80 IN, Device Set SUDPTR H-L to start of

1 bRequest 0x06 “Get_Descriptor” Configuration Descriptor tablein
2 wValueL CFG Config Number RAM

3 wValueH 0x02 Descriptor Type:

Configuration

4 windexL 0x00
5 windexH 0x00
6
7

wLengthL LenL
wLengthH LenH

7.3.4.3 Get Descriptor-String

Table 7-12. Get Descriptor-String

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x80 IN, Device Set SUDPTR H-L to start of
1 bRequest 0x06 “Get_Descriptor” Sring Descriptor table in RAM
2 wValueL STR String Number
3 wValueH 0x03 Descriptor Type:
String
windexL 0x00 (Language ID L)

wlndexH 0x00 (Language ID H)
wLengthL LenL
wLengthH LenH

~N(oo b~

Configuration and string descriptors are handled similarly to device descriptors. The
8051 firmware reads byte 2 of the SETUP data to determine which configuration or string
is being requested, |oads the corresponding table pointer into SUDPTRH-L, and the EZ-
USB core does the rest

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 111

7.3.5 Set Descriptor

Table 7-13. Sat Descriptor-Device

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x00 OUT, Device Read device descriptor data over
1 bRequest 0xQ7 “Set_Descriptor” OUTOBUF.
2 wValuel 0x00
3 wValueH 0x01 Descriptor Type:

Device
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL
7 wLengthH LenH

Table 7-14. Sat Descriptor-Configuration

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x00 OUT, Device Read configuration descriptor
1 bRequest 0xQ7 “Set_Descriptor” data over OUTOBUF.
2 wValuel 0x00
3 wValueH 0x02 Descriptor Type:

Configuration
4 windexL 0x00
5 windexH 0x00
6 wLengthL LenL
7 wLengthH LenH

Table 7-15. Sat Descriptor-String

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x00 OUT, Device Read string descriptor data over
1 bRequest 0xQ7 “Set_Descriptor” OUTOBUF.
2 wValuel 0x00
3 wValueH 0x03 Descriptor Type:

String
4 windexL 0x00 (Language ID L)
5 wlndexH 0x00 (Language ID H)
6 wLengthL LenL
7 wLengthH LenH

The 8051 handles Set_Descriptor requests by clearing the HSNAK bit (by writing “1” to
it), then reading descriptor data directly from the OUTOBUF buffer. The EZ-USB core
keeps track of the number of bytes transferred from the host into OUTOBUF, and
compares this number with the length field in bytes 6 and 7. When the proper number of
bytes has been transferred, the EZ-USB core automatically responds to the status phase,
which isthe third and final stage of the CONTROL transfer.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 112

Note: the 8051 controls the flow of datain the Data Stage of a Control Transfer. After
the 8051 processes each OUT packet it loads any value into the OUT endpoint’s byte
count register to re-arm the endpoint

Configurations, Interfaces and Alternate Settings

A USB device can have multiple
configurations, only one of which is
active at atime.

. . . Config 1 Config 2

A configuration may have multiple High Power | | - Low Power
interfaces, al of which are
concurrently active. Multiple
interfaces allow different device e O | [otoce 1 || imertace 2 | | Meraces
drivers to be associated with control audio video storage
different portions of the USB /\
device. : : :
Alt Setting Alt Setting Alt Setting

0 1 (Pick One

3
Each interface can have alternate
settings. Each alternate setting has

acollection of endpoints.

This structure is a software model; the EZ-USB core takes no action when these settings
change. The 8051, however, must re-initialize endpoints when the host changes
configurations or interface alternate settings.

Asfar as 8051 firmware is concerned, a*“configuration” is ssimply a byte variable that
indicates the current configuration. The host issues a Set_Configuration request to
select a configuration, and a Get_Configuration request to determine the current
configuration.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 113

7.3.6 Set Configuration

Table 7-16. Set Configuration

Byte | Field Value Meaning 8051 Response

0 BmReguest | 0x00 OUT, Device Read and stash byte 2, change
1 Brequest 0x09 “Set_Configuration” | configurationsin firmware.

2 WvalueL CFG Config. Number

3 WvalueH 0x00

4 WindexL 0x00

5 WindexH 0x00

6 WlengthL 0x00

7 WlengthH 0x00

When the host issues the “Set_Configuration” request, the 8051 saves the configuration
number (byte 2 in Table 7-16), performs any internal operations necessary to support the
configuration, and finaly clears the HSNAK bit (by writing 1 to it) to terminate the
Set_Configuration CONTROL transfer.

Note:
After setting a configuration, the host issues * Set_Interface” commands to set up the
various interfaces contained in the configuration.

7.3.7 Get Conguration

Table 7-17. Get Configuration

Byte | Field Value Meaning 8051 Response

0 BmRequest | 0x80 IN, Device Send CFG over INOBUF after
1 bRequest 0x08 “Get_Configuration” | reconfiguring.

2 wValuel 0x00

3 wValueH 0x00

4 windexL 0x00

5 windexH 0x00

6 wLengthL 1 LenL

7 wLengthH 0 LenH

The 8051 returns the current configuration number. It loads the configuration number
into EPOIN, loads a byte count of one into EPOINBC, and finally clears the HSNAK bit
(by writing 1 to it) to terminate the Set_Configuration CONTROL transfer.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 114

7.3.8 Set Interface

This confusingly named USB command actually sets and reads back alter nate settings for
a specified interface.

USB devices can have multiple concurrent interfaces. For example a device may have an
audio system that supports different sample rates, and a graphic control panel that
supports different languages. Each interface has a collection of endpoints. Except for
endpoint 0, which each interface uses for device control, endpoints may not be shared
between interfaces.

Interfaces may report alternate settings in their descriptors. For example the audio
interface may have setting O, 1 and 2 for 8KHz, 22KHz and 44KHz sample rates, and the
panel interface may have settings 0 and 1 for English and Spanish. The Set/Get_Interface
requests select between the various alternate settings in an interface.

Table 7-18. Set Interface (Actually, Set Alternate Setting ASfor Interface IF)

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x00 OUT, Device Read and stash byte 2 (AS) for
1 bRequest 0x0B “Set_Interface” Interface IF, change setting for
2 wValuel AS Alt Setting Number | Interface IF in firmware.

3 wValueH 0x00

4 windexL IF For thisinterface

5 windexH 0x00

6 wLengthL 0x00

7 wLengthH 0x00

The 8051 should respond to a Set_Interface request by performing the following steps:

Perform the internal operation requested (such as adjusting a sampling rate).

Reset the data toggles for every endpoint in the interface.

For an IN endpoint, clear the busy bit for every endpoint in the interface.

For an OUT endpoint, load any value into the byte count register for every endpoint
in the interface.

Clear the HSNAK bit (by writing 1 to it) to terminate the Set_Feature/Stall
CONTROL transfer.

pOODNDE

o

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 115

7.3.9 Get Interface

Table 7-19. Get Interface (actually, Get Alternate Setting ASfor Interface IF)

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x80 IN, Device Send ASfor Interface IF over
1 bRequest O0x0A “Get_Interface” OUTOBUF (1 byte).

2 wValuel 0x00

3 wValueH 0x00

4 windexL IF For thisinterface

5 windexH 0x00

6 wLengthL 1 LenL

7 wLengthH 0 LenH

The 8051 smply returns the alternate setting for the requested interface IF, and clears the
HSNAK bit by writing “1” to it.

7.3.10 Set Address

When aUSB deviceisfirst plugged in, it responds to device address O until the host
assigns it a unique address using the Set_ Address request. The EZ-USB core copiesthis
device address into the FNADDR (Function Address) register, and subsequently responds
only to requests to this address. This addressisin effect until the USB deviceis
unplugged, the host issues a USB Reset, or the host powers down.

The FNADDR register can be read, but not written by the 8051. Whenever the EZ-USB
core ReNumerates™, it automatically resets the FNADDR to zero allowing the device to
come back as “new”.

An 8051 program does not need to know the device address , since the EZ-USB core

automatically responds only to the host-assigned FNADDR value. The EZ-USB core
makes it readable by the 8051 for debug/diagnostic purposes.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 116

7.3.11 Sync Frame

Table 7-20. Sync Frame

Byte | Field Value Meaning 8051 Response

0 bmRequest | 0x82 IN, Endpoint Send a frame number over

1 bRequest 0x0C “Sync_Frame” INOBUF to synchronize endpoint
2 wValuel 0x00 EP.

3 wValueH 0x00

4 windexL EP Endpoint number

5 windexH 0x00 EP(n):

6 wLengthL 2 LenL 0x08-0x0F: OUT8-0UT15

7 wLengthH 0 LenH 0x88-0x8F: IN8-IN15

The Sync_Frame request is used to establish a marker in time so the host and USB device
can synchronize multi-frame transfers over isochronous endpoints.

Suppose an isochronous transmission consists of a repeating sequence of five 300 byte
packets transmitted from host to device over EP8-OUT. Both host and device maintain
seguence counters that count repeatedly from 1 to 5 to keep track of the packetsinside a
transmission. To start up in sync, both host and device need to reset their countsto 1 at
the same time (in the same frame).

To get in sync, the host issues the Sync_Frame request with EP=EP8-OUT (byte 4). The
8051 firmware responds by loading INOBUF with a two-byte frame count for some future
time, for example the current frame plus 20. This marks frame “current+20” as the sync
frame, during which both sides will initialize their sequence countersto 1. The 8051
reads the current frame count in the USBFRAMEL and USBFRAMEH registers.

Multiple isochronous endpoints can be synchronized in this manner. The 8051 keeps
separate internal sequence counts for each endpoint.

About USB Frames

The USB host issues an SOF (Start Of Frame) packet once every millisecond. Every
SOF packet contains an 11-bit (mod-2048) frame number. The 8051 services all
isochronous transfers at SOF time, using a single SOF interrupt request and vector. If the
EZ-USB core detects a missing SOF packet, it uses an internal counter to generate the
SOF interrupt.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 117

7.3.12 Anchor Load

The USB endpoint zero protocol provides a mechanism for mixing vendor-specific
requests with the previously described standard device requests. Bits 6:5 of the
bmRequest field are set to 00 for a standard device request, and to 10 for a vendor
request.

Table 7-21. Anchor Download

Byte | Field Value Meaning 8051 Response
0 bmRequest | 0x40 Vendor Request, OUT | Nonerequired
1 bRequest O0xAQ “Anchor Load”

2 wValueL AddrL | Starting address

3 wValueH AddrH

4 windexL 0x00

5 windexH 0x00

6 wLengthL LenL Number of Bytes

7 wLengthH LenH

Table 7-22. Anchor Upload

Byte | Field Value Meaning 8051 Response
0 bmRequest | OxCO Vendor Request, IN None required
1 bRequest O0xAQ “Anchor Load”

2 wValueL AddrL | Starting address

3 wValueH AddrH

4 windexL 0x00

5 windexH 0x00

6 wLengthL LenL Number of Bytes

7 wLengthH LenH

The EZ-USB core responds to two endpoint zero vendor requests, RAM Download and
RAM Upload. These requests are active in all modes (ReNum=0 or 1).

Since bit 7 of the first byte of the SETUP packet specifies direction, only one bRequest
value (0xA0) isrequired for the upload and download requests. These RAM |oad
commands are available to any USB device that uses the EZ-USB chip.

A host |loader program typically writes 0x01 to the CPUCS register to put the 8051 into
RESET, loads all or part of the EZ-USB internal RAM with 8051 code, and finally
reloads the CPUCS register with 0 to take the 8051 out of RESET. The CPUCS register
isthe only USB register that can be written using the Anchor Download command.

EZ-USB TRM V 1.51 Chapter 7. EZ-USB Control Endpoint Zero Page 118

8 EZ-USB Isochronous Transfers

8.1 Introduction

I sochronous endpoints typically handle time-critical, streamed data that is delivered or
consumed in byte-sequential order. Examples might be audio data sent to a DAC over
USB, or teleconferencing video data sent from a camerato the host. Due to the byte-
sequential nature of this data, the EZ-USB chip makes isochronous data available as a
single byte that represents the head or tail of an endpoint FIFO.

The EZ-USB chip implements sixteen isochronous endpoints, IN8-IN15 and OUT8-
OUT15. 1024 bytes of FIFO memory may be distributed over the 16 endpoint addresses.
FIFO sizes for the isochronous endpoints are programmable.

OUTNDATA Register [« 8051 FIFO
n=8-15
() SOFT
usB
USB FIFO ouT
Data

INNDATA Register }—» 8051 FIFO
n=8-15
() SOFl
usB
USB FIFO IN
Data

Figure 8-1. EZ-USB isochronous endpoints 8-15

The 8051 reads or writes isochronous data using sixteen FIFO data registers, one per
endpoint. These FIFO registers are shown in Figure 8-1 as INNDATA (Endpoint n IN
Data) and OUTNDATA (Endpoint n OUT Data).

The EZ-USB core provides atotal of 2048 bytes of FIFO memory (1024 bytes, double-
buffered) for SO endpoints. This memory isin addition to the 8051 program/data
memory, and normally exists outside of the 8051 memory space. The 1024 FIFO bytes
may be divided among the sixteen isochronous endpoints. The 8051 writes sixteen EZ-
USB registers to allocate the FIFO buffer space to the isochronous endpoints. The 8051
also sets ‘endpoint valid' bits to enable isochronous endpoints.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 119

8.2 IsochronousIN Transfers

IN transfers travel from device to host. Figure 8-2 shows the EZ-USB registers and bits
associated with isochronous IN transfers.

Registers Associated with an ISO IN endpoint
(EP8IN shown as example)

~—— Initialization ~N Data transfer ———
|N|SOVAL‘15‘14‘13‘12‘11‘10‘ 9 ‘ s‘ |N8DATA\ 7 ‘ 6 ‘ E ‘ 4 ‘ 3 ‘ 2 ‘ 1 ‘ 0‘
Endpoint Valid (1=valid) Data to USB

|N8ADDR‘AQ‘AB‘A?‘A6‘A5‘A4‘ 0 ‘ 0 ‘
FIFO Start Address (see text)

USBIRQ| 7 &[5 |4|a]z[1 o
SOFIR (1=clear request)
USBPAR [7 [6[s[afs 2]1]o]| ™ /
ISOSENDO (see text)

USBIEN | 7|6 |s|4 3][2]1]0]
SOFIE (1=enabled)

Figure 8-2. Isochronous IN endpoint registers

8.2.1 Initialization

To initialize an isochronous IN endpoint, the 8051 performs the following steps:

1. Setsthe endpoint valid bit for the endpoint.

2. Setsthe endpoint’s FIFO size by loading a starting address (Section 8-4).

3. Setsthe ISOSENDO bit in the USBPAIR register for the desired response (see
below).

4. Enablesthe SOF interrupt. All isochronous endpoints are serviced in response
to the SOF interrupt.
The EZ-USB core uses the ISOSENDO bit to determine what to do if:
1. The 8051 does not load any bytesto an INNDATA register during the
previous frame, and

2. AnIN token for that endpoint arrives from the host.

If ISOSENDO=0 (the default value), the EZ-USB core does not respond to the IN token.
If ISOSENDO=1, the EZ-USB core sends a zero-length data packet in response to the IN

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 120

token. Which action to take depends on the overall system design. The ISOSENDO bit
appliesto all of theisochronous IN endpoints, EP8IN through EP15IN.

8.2.2 IN DataTransfers

When an SOF interrupt occurs, the 8051 is presented with empty IN FIFOS that it fills
with data to be transferred to the host during the next frame. The 8051 has one
millisecond to transfer data into these FIFOS before the next SOF interrupt arrives.

To respond to the SOF interrupt, the 8051 clears the USB interrupt (8051 INT2), and
clears the SOFIR (Start Of Frame Interrupt Request) bit by writing aoneto it. Then the
8051 loads data into the appropriate INNDATA FIFO register(s). Unlike bulk transfers,
the 8051 does not load a byte count to “arm” an isochronous endpoint. The EZ-USB core
keeps track of the number of bytes the 8051 loads to each INNDATA register, and
subsequently transfers the correct number of bytesin response to the USB IN token
during the next frame.

The EZ-USB FIFO swap occurs every SOF, even if during the previous frame the host
did not issue an IN token to read the isochronous FIFO data, or if the host encountered an
error in the data. USB isochronous data has no ‘re-try’ mechanism like bulk data.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 121

8.3

| sochronous OUT Transfers

OUT transfers travel from host to device. Figure 8-3 shows the EZ-USB registers and

bits associated with isochronous OUT transfers.

Registers Associated with an ISO OUT endpoint
(EP150UT shown as example)

Data transfer

Initialization

OUTISOVAL | 15 ‘ 14 ‘ 13 ‘ 12 ‘ 1 ‘ 10 ‘ 9 E
Endpoint Valid (1=valid)

OUT15ADDR ‘AQ‘AB‘A7‘A6‘A5‘A4‘ 0 ‘ 0 ‘
FIFO Start Address (see text)

OUT15DATA \7\6\5\4\3\2\1\0\
Data from USB

USBIRQ [7 [e [s]4]s]2][1]o0]

SOFIR (1=clear request)

USBIEN [7 [6 [s[a]3[2]1]0]
SOFIE (1=enabled)

OUT1SBCH | 7 |6 |5 | 4|32 |9]s|
Received Byte Count (H)

outasaeL [[s[4fafz]s]o]
Received Byte Count (L)

ISOERR ‘15‘14‘13‘12‘11‘10‘ 9 ‘ 8 ‘
OUT15 CRC Error (1=error)

Figure 8-3. Isochronous OUT registers

8.3.1 Initialization

To initialize an isochronous OUT endpoint, the 8051.:

1. Setsthe endpoint valid bit for the endpoint.

2. Setsthe endpoint’s FIFO size by loading a starting address (Section 8.4).

3. Enablesthe SOF interrupt. All isochronous endpoints are serviced in response
to thisinterrupt.

8.3.2 OUT Data Transfer

When an SOF interrupt occurs, the 8051 is presented with FIFOS containing OUT data
sent from the host in the previous frame, along with 10-bit byte counts indicating how
many bytes arein the FIFOS. The 8051 has one millisecond to transfer data out of these
FIFOS before the next SOF interrupt arrives.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 122

To respond to the SOF interrupt, the 8051 clears the USB interrupt (8051 INT2), and
clears the SOFIR bit by writing aonetoit. Then the 8051 reads data from the

appropriate OUTNDATA FIFO register(s). The 8051 can check an error bit in the
ISOERR register to determine if a CRC error occurred for the endpoint data.

| sochronous data is never resent, so the firmware must decide what to do with “bad-

CRC” data.

8.4 Setting I sochronous FIFO Sizes

Up to sixteen EZ-USB isochronous endpoints share an EZ-USB 1024 byte RAM which
can be configured as one to sixteen FIFOS. The 8051 initializes the endpoint FIFO sizes
by specifying the starting address for each FIFO within the 1024 bytes, starting at address
zero. Theisochronous FIFOS can exist anywhere in the 1024 bytes, but the user must
take careto insure that there is sufficient space between start addresses to accommodate
the endpoint FIFO size.

Sixteen start address registers set the isochronous FIFO sizes (Table 8-1). The EZ-USB
core constructs the address within the 1024 byte range from the register value as shown

in Figure 8-4.
[Address l
A9 | AB | A7 | A6 | A5 | A4 0
t Register f
Figure 8-4. FIFO Sart Address format
Table 8-1. Isochronous endpoint FIFO Sarting Address Registers
Register Function b7 |b6 |b5 b4 b3 |b2 |b1 b0
OUT8ADDR |Endpt8 OUT Start Addr |A9 |A8 |A7 |A6 A5 A4 |0 0
OUT9ADDR |Endpt9 OUT Start Addr |A9 |A8 |A7 |A6 A5 A4 |0 0
OUT10ADDR |Endpt 10 OUT Start Addr /A9 |A8 |A7 |A6 A5 A4 |0 0
OUT11ADDR |Endpt 11 OUT Start Addr /A9 |A8 |A7 |A6 A5 A4 |0 0
OUT12ADDR |Endpt 12 OUT Start Addr /A9 |A8 |A7 |A6 A5 A4 |0 0
OUT13ADDR |Endpt 13 OUT Start Addr /A9 |A8 |A7 |A6 A5 A4 |0 0
OUT14ADDR |Endpt 14 OUT Start Addr /A9 |A8 |A7 |A6 A5 A4 |0 0
OUT15ADDR |Endpt 15 OUT Start Addr /A9 |A8 |A7 |A6 A5 A4 |0 0
INSADDR Endpt 8 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0
INSADDR Endpt 9 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0
IN1IOADDR Endpt 10 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0
IN11ADDR Endpt 11 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0
IN12ADDR Endpt 12 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0
IN13ADDR Endpt 13 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0
IN14ADDR Endpt 14 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0
IN15ADDR Endpt 15 IN Start Addr A9 |A8 |A7 A6 A5 A4 |0 0

EZ-USB TRM YV 1.51

Chapter 8. EZ-USB Isochronous Transfers

Page 123

The size of an isochronous endpoint FIFO is determined by subtracting consecutive
addresses in Table 8-1, and multiplying by four. Values written to these registers should
have the 2 LSB’s set to zero. The last endpoint, EP15IN, has a size of 1024 minus
IN15ADDR times four. Because the 10-bit effective address has the four LSB’s set to
zero (Figure 8-4), the FIFO sizes are dlocated in increments of 16 bytes. For example, if
OUT8ADDR=0x00 and OUT9ADDR=0x04, then EPBOUT has a FIFO size of the
difference times 4, or 16 bytes.

An 8051 assembler or C compiler may be used to trandate FIFO sizes into starting
addresses. The assembler example in Figure 8-5 shows a block of equates for thel6
isochronous FIFO sizes, followed by assembler equations to compute the corresponding
FIFO relative address values. To initialize all sixteen FIFO sizes, the 8051 merely copies
the table starting at SOUTAD to the sixteen EZ-USB registers starting at OUTSADDR.

0100 EP8I NSz equ 256 ; Iso FIFO sizes in bytes
0100 EP8OUTSZ equ 256

0010 EP9I NSZ equ 16

0010 EP9OUTSZ equ 16

0010 EP101 NSz equ 16

0010 EP100OUTSZ equ 16

0000 EP111 NSZ equ 0

0000 EP110UTSZ equ 0

0000 EP12| NSZ equ 0

0000 EP120UTSZ equ 0

0000 EP131 NSz equ 0

0000 EP130UTSZ equ 0

0000 EP14| NSz equ 0

0000 EP140UTSZ equ 0

0000 EP15|1 NSz equ 0

0000 EP150UTSZ equ 0

0000 8CQUTAD equ 0 ; Load these 16 bytes into ADDR regs starting OUT8ADDR
0040 9QUTAD equ 8QUTAD + LOW EP8QUTSZ/ 4)
0044 10QUTAD equ 9QUTAD + LOW EP9QUTSZ/ 4)
0048 11QUTAD equ 100QUTAD + LOW EP100QUTSZ/ 4)
0048 12QUTAD equ 110UTAD + LOW EP11QUTSZ/ 4)
0048 13QUTAD equ 120UTAD + LOW EP120QUTSZ/ 4)
0048 14QUTAD equ 130UTAD + LOW EP130QUTSZ/ 4)
0048 15QUTAD equ 140UTAD + LOW EP140QUTSZ/ 4)
0048 81 NAD equ 150UTAD + LOW EP150QUTSZ/ 4)
0088 91 NAD equ 8l NAD + LOW EP8I NSZ/ 4)
008C 101 NAD equ 91 NAD + LOW EP9I NSZ/ 4)
0090 111 NAD equ 101 NAD + LOW EP10I NSZ/ 4)
0090 121 NAD equ 111 NAD + LOW EP11l NSZ/ 4)
0090 131 NAD equ 121 NAD + LOW EP12| NSZ/ 4)
0090 141 NAD equ 131 NAD + LOW EP13I NSZ/ 4)
0090 151 NAD equ 141 NAD + LOW EP14| NSZ/ 4)

Figure 8-5. Assembler trandates FIFO sizes to addresses

The assembler computes starting addresses in Figure 8-5 by adding the previous
endpoint’ s address to the desired size shifted right twice. Thisaligns A9 with bit 7 as
shown in Table 8-1. The“LOW” operator takes the low byte of the resulting 16-bit
expression.

The user of this code must insure that the sizes given in the first equate block are all

multiples of 16. Thisis easy to tell by inspection—the least significant digit of the hex
valuesin the first column should be zero.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 124

8.5 Isochronous Transfer Speed

The amount of data USB can transfer during a one millisecond frame is slightly more
than 1000 bytes per frame (1500 bytes theoretical, without accounting for USB overhead
and bus utilization). A device's actual isochronous transfer bandwidth is usually
determined by how fast the CPU can move datain and out of its isochronous endpoint
FIFOS.

The 8051 code example in Figure 8-6 shows atypical transfer loop for moving externa
FIFO datainto an IN endpoint FIFO . This code assumes that the 8051 is moving data
from an externa FIFO attached to the EZ-USB data bus and strobed by the RD signal,
into an internal isochronous IN FIFO.

nmv dptr, #8000H ; pointer to any outside address
inc dps ; switch to second data pointer
nmv dptr, #1 NBDATA ; pointer to an |IN endpoint FIFO (I N8 as exanpl e)
inc dps ; back to first data pointer
nmv r7, #nByt es ; r7 is loop counter--transfer this many bytes
| oop: nmovx a, @lptr ; (2) read byte fromexternal bus to acc
inc dps ; (1) switch to second data pointer
nmovx @iptr, a ; (2) wite to 1SO FIFO
inc dps ; (1) switch back to first data pointer
dj nz r7,1 oop ; (3) loop ‘nBytes’ tines

Figure 8-6. 8051 code to transfer data to an isochronous FIFO (INSDATA)

The numbers in parentheses indicate 8051 cycles. One cycleisfour clocks, and the EZ-
USB 8051 is clocked at 24 MHz (42 nanoseconds). Thus an 8051 cycle takes 4*42=168
nanoseconds, and the loop takes 9 cycles or 1.5 microseconds. This loop can transfer
about 660 bytes into an IN FIFO every millisecond (1ms/1.5us).

If more speed is required, the loop can be “unrolled” by in-line coding the first four
instructions in the loop. Then a byteis transferred in 6 cycles (24 clocks) which equates
to 1 microsecond per byte. Using this method, the 8051 could transfer 1000 bytes into an
IN FIFO every millisecond. In practice a better solution is to in-line code only a portion
of the loop code, which decreases full in-line performance only slightly and uses far
fewer bytes of program code.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 125

8.6 Fast Transfers

EZ-USB has a specia “fast transfer” mode for applications that use external FIFOS
connected to the EZ-USB data bus. These applications typically require very high
transfer speeds in and out of EZ-USB endpoint buffers.

EZ-USB
Registers
(Addressed
DPTR > as external

RAM)

|

movx a,@dptr movx @dptr,a

) |

Accumulator

Figure 8-7. 8051 movx Instructions

The 8051 transfers data to and from EZ-USB registers and RAM using the ‘movx’ (move
external) instruction (Figure 8-7). The 8051 loads one of its two 16-bit data pointers
(DPTR) with an address in RAM, and then executes a‘movx’ instruction to transfer data
between the accumulator and the byte addressed by DPTR. The“@” symbol indicates
that the address is supplied indirectly, by the DPTR.

The EZ-USB core monitors ‘movx’ transfers between the accumulator and any of the
sixteen isochronous FIFO registers. If an enable bit is set (FISO=1 in the FASTXFR
register), any read or write to an isochronous FIFO register causes the EZ-USB core to
connect the data to the EZ-USB data bus D[7..0], and generate external read/write
strobes. One ‘movx’ instruction thus transfers a byte of datain or out of an endpoint
FIFO and generates timing strobes for an outside FIFO or memory. The 2-cycle ‘ movx’
instruction takes 2 cycles or 333 nanoseconds. Figure 8-8 and Figure 8-9 show the data
flow for fast writes and reads over the EZ-USB data bus.

Fast Bulk Transfers

The EZ-USB core provides a specia auto-incrementing data pointer that makes the fast
transfer mechanism available for bulk transfers. The 8051 loads a 16-bit RAM address
into the AUTOPTRH/L registers, and then accesses RAM data as a FIFO using the
AUTODATA register. Section 6.15 in Chapter 6, , “EZ-USB Bulk Transfers’ describes
this special pointer and register.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 126

8.6.1 Fast Writes

DPTR > ISO OUT FIFO

g FWR#
< External FIFO
é>< D[7.0] or ASIC

Accumulator

Figure 8-8. Fast Transfer, EZ-USB to outside memory

Fast writes are illustrated in Figure 8-8. When the fast mode is enabled, the DPTR points
to an isochronous OUT FIFO register, and the 8051 executes the ‘movx a,@dptr’
instruction, the EZ-USB core broadcasts the data from the isochronous FIFO to the
outside world via the data bus D[7..0], and generates a Write Strobe FWR# (Fast Write).
A choice of eight waveformsis available for the write strobe, as shown in the next
section.

8.6.2 Fast Reads

DPTR > ISO IN FIFO
<
% FRD#
) External FIFO
>O>< D[7.0] or ASIC
£
>
7N
Accumulator

Figure 8-9. Fast Transfer, outside memory to EZ-USB

Fast reads are illustrated in Figure 8-9. When the fast mode is enabled, the DPTR points
to an isochronous OUT FIFO register, and the 8051 executes the ‘movx @dptr,a
instruction, the EZ-USB core breaks the data path from the accumulator to the IN FIFO
register, and instead writes the IN FIFO using outside data from D[7..0]. The EZ-USB

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 127

core synchronizes this transfer by generating a FIFO Read Strobe FRD# (Fast Read). A
choice of eight waveforms is available for the read strobe, as shown in the next section.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 128

8.7 Fast Transfer Timing

The 8051 sets bitsin the FASTXFR register to select the fast SO and/or fast BULK
mode and to adjust the timing and polarity of the read and write strobes FRD# and

FWR#.
FASTXFR Fast Transfer Control TFE2
b7 b6 b5 b4 b3 b2 bl b0
FISO FBLK RPOL RMOD1 RMODO WPOL WMOD1 | WMODO

Figure 8-10. The FASTXFR register controls FRD# and FWR# strobes

The 8051 sets FISO=1 to select the fast 1ISO mode and FBLK =1 to select the fast Bulk
mode. The 8051 selects read and write strobe pulse polarities with the RPOL and WPOL
bits, where O=active low, 1=active high. Read and write strobe timings are set by
RMOD1-RMODO for read strobes and WMOD1-WMODO for write strobes, as shown in
Figure 8-11 (write) and Figure 8-12 (read).

Note:

When using the fast transfer feature, be sure to enable the FRD# and FWR# strobe
signals in the PORTACFG register.

EZ-USB TRM YV 1.51

Chapter 8. EZ-USB Isochronous Transfers

Page 129

8.7.1 Fast Write Waveforms

tCL
41.66 ns

Clk24 | [e e e
D[7..0] : Output) stretch=000
stretch=000
FWR#[00] \ /
stretch=000
FWR#[01] \ /
stretch=000
FWR#10] | /
stretch=000
FWR#11] /

D[7..0] —(Output stretch=001 >—
FWR#[00] \ / stretch=001
FWR#[01] \ stretch=001 /
FWR#10] | | stretch=001
FWR#11] stretch=001 |

[nn] = WMOD1:WMODO0, WPOL=0
Note: If WPOL=1 the waveforms are inverted

Figure 8-11. Fast Write timing

The timing choices for fast write pulses (FWR#) are shown in Figure 8-11. The 8051 can
extend the output data and widths of these pulses by setting cycle stretch values greater
than zero in the 8051 Clock Control Register CKCON (at SFR location OX8E). The top
five waveforms show the fastest write timings, with a stretch value of 000, which
performs the write in eight 8051 clocks. The bottom five waveforms show the same
waveforms with a stretch value of 001.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 130

8.7.2 Fast Read Wavefor ms

tCL
‘ 41.66 ns

0sc24 o 7 7 7 [_]
D[7..0] @

FRD#[00] \ / stretch=000, 001

D[7..0] @}

FRD#[01] \ / stretch=000, 001

D[7..0] G@

FRD#[10] \ / stretch=000

FRD#[10] \ | stretch=001

D[7..0] C@

FRD#[11] \ / stretch=000

FRD#[11] \ stretch=001 |

[nn] = RMOD1:RMODO, RPOL=0
Note: If WPOL=1 the waveforms are inverted

Figure 8-12. Fast Read timing

The timing choices for fast read pulses (FRD#) are shown in Figure 8-12. Read Strobe
waveforms for stretch values of 000 and 001 are indicated. Although two of the the read
strobe widths can be extended using stretch values greater than 000, the times that the
input data is sampled by the EZ-USB core remains the same as shown.

FRD# strobes [00] and [01], along with the OSC24 clock signal are typically used to
connect to an external synchronous FIFO. The one-clock-wide read strobe insures that
the FIFO address advances only once per clock. The second strobe [01] is for FIFOS that
put data on the bus one clock after the read strobe. Stretch values above 000 serve only
to extend the 8051 cycle times, without affecting the width of the FRD# strobe.

FRD# strobes [10] and [11] are typically connected to an external asynchronous FIFO,
where no clock isrequired. Strobe [10] samples the data at the same time as strobe [11],
but provides awider pulse width (for stretch=000), which is required by some audio
CODECS. Timing values for these strobe signals are given in Chapter 13, “EZ-USB
AC/DC Parameters’.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 131

8.8 Fast Transfer Speed

The 8051 code example in Figure 8-13 shows a transfer loop for moving external FIFO
datainto the endpoint 8-IN FIFO . This code moves data from an external FIFO attached
to the EZ-USB data bus and strobed by the FRD# signal, into the FIFO register
INSDATA.

(init) mov dptr, #FASTXFR ; set up the fast |SO transfer node
nov a, #10000000b ; FI'SO=1, RPOL=0, RML-0 = 00
nmovx @iptr, a ; load the FASTXFR register
nmv dptr, #1 N8DATA ; pointer to IN endpoint FIFO
nmv r7,#80 ; r7 is loop counter, 8 bytes per |oop

ioop: nmovx @ipt r,

a ; (2) wite IN FIFO using byte from external bus
nmovx @iptr, a ; (2) again
nmovx @iptr, a ; (2) again
nmovx @iptr, a ; (2) again
nmovx @iptr, a ; (2) again
nmovx @iptr, a ; (2) again
nmovx @iptr, a ; (2) again
nmovx @iptr, a ; (2) again
dj nz r7,1 oop ; (3) do eight nmore, ‘r7' tines

Figure 8-13. 8051 code to transfer 640 bytes of external data to an isochronous IN FIFO

This routine uses a combination of in-line and looped code to transfer 640 bytes into the
EP8IN FIFO from an external FIFO. The loop transfers eight bytesin 19 cycles, and it
takes 80 times through the loop to transfer 640 bytes. Therefore the total transfer timeis
80 times 19 cycles, or 1520 cycles. The 640 byte transfer thus takes 1520* 166ns or 252
microseconds, or approximately one-fourth of the 1 ms USB frame time.

Using this routine, the time to completely fill one isochronous FIFO with 1024 bytes
(assuming all 1024 isochronous FIFO bytes are assigned to one endpoint) would be 128
times 19 cycles, or 2432 cycles. The 1024 byte transfer would take 403 microseconds,
less than half of the 1 ms USB frame time.

If still faster timeis required, the routine can be modified to put more of the ‘movx’
instructions in-line. For example, with sixteen in-line ‘movx’ instructions, the transfer
time for 1024 bytes would be 35 cycles times 64 loops or 2240 cycles, or 371
microseconds, an 8% speed improvement over the eight instruction loop.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 132

8.9 Other Isochronous Registers

Two additional registers, ISOCTL and ZBCOUT provide additional isochronous
endpoint features.

8.9.1 DisablelSO

ISOCTL | sochr onous Contr ol 7TFA1
b7 b6 b5 b4 b3 b2 bl b0
PPSTAT MBZ MBZ 1SODISAB

Figure 8-14. ISOCTL register

Bit zero of the ISOCTL register is called ISODISAB. When the 8051 sets ISODISAB=1,
al sixteen of EZ-USB endpoints are disabled. IF ISODISAB=1, EP8IN-EP15IN and
EP8OUT-EP150UT should not be used. ISODISAB is cleared at power-on.

When |SODISAB=1, the 2048 bytes of RAM normally used for isochronous buffersis
available to the 8051 as XDATA RAM (not program memory), from 0x2000 to Ox27FF
in internal memory. When ISODISAB=1 the behavior of the RD# and WR# strobe
signals changes to reflect the additional 2K of memory inside the EZ-USB chip. Thisis
shown in Table 8-2.

Table 8-2. Addreses for RD# and WR# vs. | SODISAB bit

ISODISAB | RD#, WR¥#
0 2000-7B40,
(default) | 8000-FFFF
1 2800-7B40,
8000-FFFF

The ISOCTL register bits shown as“MBZ” (must be zero) must be written with zeros.
The PPSTAT bit toggles every SOF, and may be written with any value (no effect).
Therefore to disable the isochronous endpoints, the 8051 should write the value 0x00 to
the ISOCTL register.

Caution: If you use this option, be absolutely certain that the host never sends
isochronous data to your device. Isochronous data directed to a disabled isochronous
endpoint system will cause unpredictable operation.

Note:
The Autopointer is not usable from 0x2000-0x27FF (the reclaimed 1SO buffer RAM)
when ISODISAB=1.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 133

8.9.2 ZeroByte Count Bits

When the SOF interrupt is asserted, the 8051 normally checks the isochronous OUT
endpoint FIFOS for data. Before reading the byte count registers and unloading an
isochronous FIFO, the firmware may wish to check for a zero byte count. In this case the
8051 can check bitsin the ZBCOUT register. Any endpoint bit set to 1 indicates that no
OUT bytes were received for that endpoint during the previous frame. Figure 8-15 shows
thisregister.

ZBCOUT Zero Byte Count Bits TFA2
b7 b6 b5 b4 b3 b2 bl b0
EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8

Figure 8-15. ZBCOUT register

The EZ-USB core updates these bits every SOF.

8.10 1SO IN Response with no data

The ISOSENDO hit (bit 7 in the USBPAIR register) is used when the EZ-USB chip
receives an isochronous IN token while the IN FIFO is empty. If ISOSENDO=0 (the
default value) the EZ-USB core does not respond to the IN token. 1f ISOSENDO=1 the
EZ-USB core sends a zero-length data packet in response to the IN token. Which action
to take depends on the overall system design. The ISOSENDO bit appliesto all of the
isochronous IN endpoints, IN-8 through IN-15.

EZ-USB TRM V 1.51 Chapter 8. EZ-USB Isochronous Transfers Page 134

9 EZ-USB Interrupts

9.1 Introduction

The EZ-USB enhanced 8051 responds to the interrupts shown in Table 9-1. Interrupt
sources that are not present in the standard 8051 are shown as checked in the “new”

column. The three interrupts used by the EZ-USB core are shown in bold type.

Table 9-1. EZ-USB interrupts

new | 8051 Interrupt Source Vector | Natural
(IRQ name) (hex) Priority
IEO INTO# Pin 03 1
TFO Timer 0 Overflow 0B 2
IE1 INT1# Pin 13 3
TF1 Timer 1 Overflow 1B 4
Rl 0& TI_ O UARTORx & TX 23 5
v TR2 Timer 2 Overflow 2B 6
v Resume (PFI) WAKEUP# Pin or 33 0
USB core
v R 1&TIl 1 UART1Rx & TX 3B 7
v [USB(INT2) USB Core 43 8
v I°C (INT3) USB Core 4B 9
v IE4 INT4 Pin 53 10
v IES INT5# Pin 5B 11
v IE6 INT6 Pin 63 12

The “Natural Priority” column in Table 9-1 shows the 8051 interrupt priorities. As
explained in Appendix C, the 8051 can assign each interrupt to a high or low priority

group. The 8051 resolves priorities within the groups using the natural priorities.

EZ-USB TRM YV 1.51

Chapter 9. EZ-USB Interrupts

Page 135

9.2 USB CorelInterrupts

The EZ-USB core provides three interrupt request types, which are described in the
following sections:

Wakeup. After the EZ-USB chip detects USB suspend and the 8051 has entered
itsidle state, the EZ-USB core responds to an externa signal on its WAKEUP#
pin or resumption of USB bus activity by re-starting the EZ-USB oscillator and
resuming 8051 operation.

USB signaling. These include sixteen bulk endpoint interrupts, three interrupts
not specific to a particular endpoint (SOF, Suspend, USB Reset), and two
interrupts for CONTROL transfers (SUTOK, SUDAYV). These twenty-one
interrupts share the USB interrupt (INT2).

I?C transfers (INT3).

9.3 Wakeup Interrupt

Chapter 10, “EZ-USB Reset and Power Management”, describes USB suspend-resume
signaling in detail, along with a code example that uses the Wakeup interrupt.

Briefly, the USB host puts a device into SUSPEND by stopping bus activity to the
device. When the EZ-USB core detects three milliseconds of no bus activity, it activates
the USB suspend interrupt request. 1f enabled, the 8051 takes the suspend interrupt, does
power management housekeeping (shutting down power to external logic), and finishes
by setting SFR bit PCON.O. Thissignalsthe EZ-USB core to enter avery low power
mode by turning off the 12 MHz oscillator.

When the 8051 sets PCON.0, it enters an idle state. 8051 execution is resumed by
activation of any enabled interrupt. The EZ-USB chip uses a dedicated interrupt for USB
Resume. When externa logic pulls WAKEUP# low (for example when a keyboard key
is pressed or amodem receives aring signal) or USB bus activity resumes, the EZ-USB
core re-starts the 12 MHz oscillator, allowing the 8051 to recognize the interrupt and
continue executing instructions.

E_EICON.S
D—» 8051

Resume signal S "RESUME"
from EZ-USB core Interrupt
» R
EICON.4(0)

Figure 9-1. EZ-USB wakeup interrupt

EZ-USB TRM V 1.51 Chapter 9. EZ-USB Interrupts Page 136

Figure 9-1 shows the 8051 SFR bits associated with the RESUME interrupt. The EZ-
USB core asserts the resume signal when the EZ-USB core senses a USB Global
Resume, or when the EZ-USB WAKEUP# pinis pulled low. The 8051 enables the
RESUME interrupt by setting EICON.5.

setb EICON 5 ; enabl e Resune interrupt

The 8051 reads the RESUME interrupt request bit in EICON.4, and clears the interrupt
request by writing a zero to EICON.4.

resume_i sr: clr El CON. 4 ; clear the 8051 WU
i nterrupt request
reti

EZ-USB TRM V 1.51 Chapter 9. EZ-USB Interrupts Page 137

9.4 USB Signaling Interrupts

Figure 9-2 shows the twenty-one USB requests that share the 8051 USB (INT2) interrupt.
The bottom IRQ, EP7-OUT, is expanded in the diagram to show the logic associated with
each of the USB interrupt requests.

EZ-USB | 8051

06 | EPO-IN

o7 [EIEO0]
08 T 8051 "USB"
09) S } Interrupt

0A
0B
e
0D
0E —
OF
10
11
12
13

14 | EP7-IN

R EXIF.4(rd)

EXIF.4(0)

OUTO7IEN.7
15 [[EP7-OUT S

INO7IRQ.7(1) R

INO7IRQ.7 (rd)
Interrupt Request Latch

—»AVEC | o |wva |3 | v2|ivi|ivo| o 0

Figure 9-2. USB interrupts

Referring to the logic inside the dotted lines, each USB interrupt source has an interrupt
request latch. The EZ-USB core sets an IRQ bit, and the 8051 clears an IRQ bit by
writing a“1” to it. The output of each latch is AND’ ed with an IEN (Interrupt Enable) bit
and then OR’ ed with all the other USB interrupt request sources.

EZ-USB TRM V 1.51 Chapter 9. EZ-USB Interrupts Page 138

The EZ-USB core prioritizes the USB interrupts, and constructs an Autovector which
appearsin the AVEC register. Theinterrupt vector values 1V[4..0] are shown to the |eft
of the interrupt sources (shaded boxes). 00 isthe highest priority, 15 isthe lowest. If two
USB interrupts occur simultaneously, the prioritization affects which oneis first indicated
inthe AVEC register. If the 8051 has enabled Autovectoring, the AVEC byte replaces
byte 0x45 in 8051 program memory. This causes the USB interrupt automatically to
vector to different addresses for each USB interrupt source. This mechanism is explained
in detail in the “USB Autovectors’ section of this chapter.

Dueto the OR gate in Figure 9-2, any of the USB interrupt sources sets the 8051 “USB”
interrupt request latch, whose state appears as an interrupt request in the 8051 SFR bit
EXIF.4. The 8051 enables the USB interrupt by setting SFR bit EIE.O. To clear the USB
interrupt request the 8051 writes a zero to the EXIF.0 bit. Note that thisis the opposite of
clearing any of the individual USB interrupt sources, which the 8051 does by writing a
oneto the IRQ bit.

When a USB resource requires service (for example, an SOF token arrives or an OUT
token arrives on aBULK endpoint), two things happen. First, the corresponding
Interrupt Request Latch is set. Second, a pulseis generated, OR’ ed with the other USB
interrupt logic, and routed to the 8051 INT2 input. The pulseisrequired because INT2 is
edge triggered.

When the 8051 finishes servicing a USB interrupt, it clears the particular IRQ bit by
writing a“1” toit. If any other USB interrupts are pending, the act of clearing the IRQ
causes the EZ-USB core logic to generate another pulse for the highest-priority pending
interrupt. If more than one is pending, they are serviced in the priority order shown in
Figure 9-2, starting with SUDAV (priority 00) as the highest priority, and ending with
EP7-OUT (priority 15) as the lowest.

EZ-USB TRM V 1.51 Chapter 9. EZ-USB Interrupts Page 139

It isimportant in any USB Interrupt Service Routine (1SR) to clear the 8051 INT2
interrupt before clearing the particular USB interrupt request latch. Thisis because as
soon as the USB interrupt is cleared, any pending USB interrupt will pulse the 8051 INT2
input, and if the INT2 interrupt request latch has not been previoudly cleared the pending

interrupt will be lost.

Figure 9-3 illustrates atypical USB ISR for endpoint 2-IN.

USB_I SR: push
push
push
push
push
push

nmov
clr
nov

nov
nov
novx

dps
dpl
dph
dpl 1
dphl
acc

a, EXIF
acc. 4
EXIF, a

dptr, #1 NO71 RQ
a, #00000100b
@iptr, a

; (performinterrupt routine stuff)

pop
pop
pop
pop
pop
pop

reti

acc
dphl
dpl 1
dph
dpl
dps

FI RST clear the USB(INT2) interrupt request

Note: EXIF reg is not 8051 bit-addressable

; now clear the USB interrupt request
; use IN2 as exanple

Figure 9-3. The order of clearing interrupt requests is important

EZ-USB TRM YV 1.51

Chapter 9. EZ-USB Interrupts

Page 140

INO7IRQ Endpoints0-7 IN Interrupt Requests 7TFA9
b7 b6 b5 b4 b3 b2 bl b0
IN7IR IN6IR IN5SIR IN4IR IN3IR IN2IR INLIR INOIR
OUTO7IRQ Endpoints 0-7 OUT Interrupt Requests TFAA
b7 b6 b5 b4 b3 b2 bl b0
OUT7IR | OUT6IR | OUTSIR | OUT4IR | OUT3IR | OUT2IR | OUT1IR | OUTOIR
USBIRQ USB Interrupt Request 7FAB
b7 b6 b5 b4 b3 b2 bl b0

URESIR | SUSPIR | SUTOKIR | SOFIR | SUDAVIR

INO7IEN Endpoints0-7 IN Interrupt Enables 7TFAC
b7 b6 b5 b4 b3 b2 bl b0

IN7IEN INGEN INSIEN | IN4IEN | IN3IEN | IN2IEN | INLIEN | INOIEN

OUTO7IEN Endpoints 0-7 OUT Interrupt Enable 7FAD
b7 b6 b5 b4 b3 b2 bl b0

OUT7IEN | OUTBIEN | OUT5IEN | OUT4IEN | OUT3IEN | OUT2IEN | OUTLIEN | OUTOIEN

USBIEN USB Interrupt Enables TFAE
b7 b6 b5 b4 b3 b2 bl b0

URESIE | SUSPIE | SUTOKIE | SOFIE | SUDAVIE

Figure 9-4. EZ-USB Interrupt Registers

Figure 9-4 shows the registers associated with the USB interrupts. Each interrupt source
has an enable (“IEN") and arequest (“IRQ”) bit. The 8051 setsthe IEN bit to enable the
interrupt. The USB core sets an IRQ bit high to request an interrupt, and the 8051 clears
an IRQ bit by writinga*“1” toit.

The USBIEN and USBIRQ registers control the first five interrupts shown in Figure 9-2.
The“INO7IEN, ” and “OUTQ7” registers control the remaining sixteen USB interrupts,
which correspond to the sixteen bulk endpoints INO-IN7 and OUTO-OUT?7.

The twenty-one USB interrupts are now described in detail.

EZ-USB TRM YV 1.51

Chapter 9. EZ-USB Interrupts

Page 141

9.5 SUTOK, SUDAV Interrupts

<«—SETUP Stage———»

S D C
E| 2Bl || || Al sbytes || R A
D|| N|| R

T olloll ¢ T| Setup || C ©

U rllpll s A|| Data 1 K

P 0 6

Token Packet Data Packet H/S Pk
SUTOK SUDAV
Interrupt Interrupt

Figure 9-5. UTOK and SUDAV interrupts

SUTOK and SUDAYV are supplied to the 8051 by EZ-USB CONTROL endpoint zero.
Thefirst portion of aUSB CONTROL transfer is the SETUP stage shown in Figure 9-5.
(A full CONTROL transfer is shown in Figure 7-1 on page 96.) When the EZ-USB core
decodes a SETUP packet, it asserts the SUTOK (SETUP Token) interrupt request. After
the EZ-USB core has received the eight bytes error-free and copied them into eight
internal registers at SETUPDAT, it asserts the SUDAV interrupt request.

The 8051 program responds to the SUDAV interrupt by reading the eight SETUP data
bytesin order to decode the USB request (Chapter 7).

The SUTOK interrupt is provided to give advance warning that the eight register bytes at
SETUPDAT are about to be over-written. It isuseful for debug and diagnostic purposes.

9.6 SOF Interrupt

Figure 9-6. A Sart Of Frame (SOF) packet

USB Start Of Frame interrupt requests occur every millisecond. When the EZ-USB core
receives an SOF packet, it copies the eleven-bit frame number (FRNO in Figure 9-6) into
the USBFRAMEH and USBFRAMEL registers, and activates the SOF interrupt request.
The 8051 services all isochronous endpoint data as a result of the SOF interrupt.

EZ-USB TRM V 1.51 Chapter 9. EZ-USB Interrupts Page 142

| 9.7 SUSPEND Interrupt

IF the EZ-USB detects three milliseconds of no bus activity, it activates the SUSP
(Suspend) interrupt request. A full description of Suspend-Resume signaling appearsin
Chapter 11, EZ-USB Power Management.

| 9.8 USB RESET Interrupt

The USB signals a bus reset by driving both D+ and D- low for at least 10 milliseconds.
When the EZ-USB core detects the onset of USB bus reset, it activates the URES
interrupt request.

9.9 Bulk Endpoint Interrupts

The remaining sixteen USB interrupt requests are indexed to the sixteen EZ-USB bulk
endpoints. The EZ-USB core activates a bulk interrupt request when the endpoint buffer
requires service. For an OUT endpoint, the interrupt request signifies that OUT data has
been sent from the host, validated by the EZ-USB core, and is sitting in the endpoint
buffer memory. For an IN endpoint, the interrupt request signifies that the data
previously loaded by the 8051 into the IN endpoint buffer has been read and validated by
the host, making the IN endpoint buffer ready to accept new data.

The EZ-USB core sets an endpoint’s interrupt request bit when the endpoint’s busy bit (in
the endpoint CS register) goes low, indicating that the endpoint buffer is available to the
8051. For example, when endpoint 4-OUT receives a data packet, the busy bit in the
OUTACS register goes low, and OUT07IRQ.4 goes high, requesting the endpoint 4-OUT
interrupt.

EZ-USB TRM V 1.51 Chapter 9. EZ-USB Interrupts Page 143

9.10 USB Autovectors

The USB interrupt is shared by 21 interrupt sources. To save the code and processing
time required to sort out which USB interrupt occurred, the EZ-USB core provides a
second level of interrupt vectoring, called “ Autovectoring”. When the 8051 takes a USB

interrupt, it pushes the program counter onto its stack, and then executes ajump to

address 43, where it expectsto find a jump instruction to an interrupt service routine. The

8051 jump instruction is encoded as follows:

Table 9-2. 8051 JUMP instruction

Address | Op-Code Hex Value
0043 Jump 0x02

0044 AddrH OxHH
0045 AddrL OxLL

If Autovectoring isenabled (AVEN=1 in the USBBAYV register), the EZ-USB core
substitutes its AVEC byte for the byte at address 0x0045. Therefore if the programmer
pre-loads the high byte (“page”’) of ajump table address at location 0x0044, the core-
inserted byte at 0x45 will automatically direct the JUMP to one of 21 addresses within
the page. In the jump table, the programmer then puts a series of jump instructions to

each particular ISR

Table 9-3. A typical USB jump table

Table Instruction:

Offset

00 JMP SUDAV | SR
04 JWP SCF | SR

08 JMP SUTCK | SR
oC JMP SUSPEND | SR
10 JMP USBRESET | SR
14 NOP

18 JVMP EPOI N | SR
1C JWP EPOQUT | SR
20 JVP I N1IBUF | SR
24 JVP EP1OUT | SR
28 JMP EP2I N | SR
2C JVP EP2QUT | SR
30 JMP EP3I N | SR
34 JVP EP3QUT | SR
38 JMP EP4I N | SR
3C JVMP EPAQUT | SR
40 JMP EP5I N | SR
44 JWP EP50UT | SR
48 JMP EP6I N | SR
4C JVP EP6QUT | SR
50 JMP EP7I N | SR
54 JVP EP7QUT | SR

9.11 Autovector Coding

EZ-USB TRM YV 1.51

Chapter 9. EZ-USB Interrupts

Page 144

A detailed example of a program that uses Autovectoring is presented in Chapter 6
(Section 6-14, “Interrupt Bulk Transfer Example”). The coding steps are summarized
here. To employ EZ-USB Autovectoring:

1. Insert ajump instruction at 0x43 to atable of jJump instructions to the various USB
interrupt service routines.

2. Code the jJump table with jump instructions to each individual USB interrupt service
routine. This table has two important requirements, arising from the format of the
AVEC byte (zero-based, with 2 LSBS set to 0):

= |t must begin on a page boundary (address OXNNQO).
= Thejump instructions must be four bytes apart.

3. Theinterrupt service routines can be placed anywhere in memory.

4. Writeinitialization code to enable the USB interrupt (INT2), and Autovectoring.

8051 USB
Interrupt
Vector USB_Jmp_Table:
0043 LIMP 0400
0044 04
0045 (00)20}‘ \
USE} core 042C LIMP EP20UT_ISR
AVEC /| 042D o1
042E 19 EP20UT _ISR:
\> 0119

Figure 9-7. The Autovector mechanismin action

Figure 9-7 illustrates Autovectoring to an ISR that services endpoint 2-OUT. When
endpoint 2-OUT requires service, the EZ-USB core activates the USB interrupt request,
vectoring the 8051 to location 0x43. The jump instruction at this location, which was
originally coded as “LJMP 04-00" becomes “LIJMP 04-2C” due to the EZ-USB core
substituting 2C as the Autovector byte for Endpoint 2 OUT (Table 9-3, page 144). The
8051 jumps to 042C, where it executes the jJump instruction to the endpoint 2-OUT ISR
shown in this example at address 0119. Once the 8051 takes the vector at 0043, initiation
of the endpoint-specific ISR takes only eight 8051 cycles.

EZ-USB TRM V 1.51 Chapter 9. EZ-USB Interrupts Page 145

9.12 1C Interrupt

[ooe s

RD or WR
I2DAT register

EZ-USB I 8051

|
| S
R | » R
12C Interrupt
Request I EXIF.SZOE

EXIF.5(rd

8051 I1°C
Interrupt
(INT3)

|I2CS | sTART

STOP

LASTRD

BERR

DONE

I2DAT

D7

D6

D5

D4

D3

D2

D1

DO

Figure 9-8. I°C interrupt enable bits and registers

Chapter 4, “EZ-USB Input/Output” describes the 8051 interface to the EZ-USB 1°C

controller. The 8051 uses two registers, 12CS (1°C Control and Status) and I2DAT (1°C
Data) to transfer data over the 1°C bus. The EZ-USB core signals completion of a byte
transfer by setting the DONE bit (12CS.0) high, which also sets an 1°C interrupt request
latch (Figure 9-8). Thisinterrupt request is routed to the 8051 INT3 interrupt.

The 8051 enables the 1°C interrupt by setting EIE.1=1. The 8051 determines the state of
the interrupt request flag by reading EXIF.5, and resets the INT3 interrupt request by

writing azero to EXIF.5. Any 8051 read or write to the I2DAT or |2CS register
automatically clears the 1°C interrupt request.

EZ-USB TRM YV 1.51

Chapter 9. EZ-USB Interrupts

Page 146

10 EZ-USB Resets

10.1 Introduction

The EZ-USB chip has three resets:

A Power-On Reset (POR), which turns on the EZ-USB chip in aknown state.
An 8051 reset, controlled by the EZ-USB core.
A USB busreset, sent by the host to reset a device.

This chapter describes the effects of these three resets.

10.2 EZ-USB Power-On-Reset (POR)

RES

8051

CPUCS.0
(1 at PWR ON)

| RESET |——» RES
EZ-USB Core 24 MHz
:'D'sé'sﬁé':
—

XIN

Oscillator —» PLL —e—» =<2

A
XOuUT CLK24

Figure 10-1. EZ-USB resets

When power isfirst applied to the EZ-USB chip, the external R-C circuit holds the EZ-
USB corein reset until the on-chip PLL stabilizes. The CLK24 pin is active as soon as
power is applied. The 8051 may clear an EZ-USB control bit, CLK240E, to inhibit the
CLK?24 output pin for EMI-sensitive applications that do not need thissignal. External
logic can force a chip reset by pulling the RESET pin HI. The RESET pin is normally
connected to VCC through a 1uF capacitor and to GND through a 10K resistor (Figure
10-1). The oscillator and PLL are unaffected by the state of the RESET pin.

The CLK24 signal is active while RESET = HI. When RESET returns LO, the activity
on the CLK 24 pin depends on whether or not the EZ-USB chip isin suspend state. If in

EZ-USB TRM V 1.51 Chapter 10. EZ-USB Resets Page 147

suspend CLK 24 stops. Resumption of USB bus activity or asserting the WAKEUP# pin
LO re-startsthe CLK 24 signal.

Power-on default values for al EZ-USB register bits are shown in Chapter 12, “EZ-USB
Registers’. Table 10-1 summarizes reset states that affect USB device operation. Note
that the term “Power-On Reset” refers to areset initiated by application of power, or by

assertion of the RESET pin.

Table 10-1. EZ-USB states after power-on reset

Item | Register Default Comment
Value
1 Endpoi nt Data XXXXXXXX
2 Byte Counts XXXXXXXX
3 CPUCS rrrr0011 | rrrr=rev nunber, bl=CLK24CE, bO0=8051RES
4 PORT Confi gs 00000000 | 1O not alternate functions
5 PORT Regi sters XXXXXXXX
6 PORT CE' s 00000000 | I nputs
7 Interrupt Enabl es | 00000000 | Di sabl ed
8 Interrupt Req's 00000000 | d eared
9 Bulk INCS 00000000 | Bul k I'N endpoi nts not busy (unarned)
10 Bul k QUT C S* 00000000 | Bul k QUT endpoi nts not busy (unarned)
11 Toggl e bits 00000000 | Data toggles = 0O
12 USBCS 00000100 | RENUMEO, DI SCOE=1 (Di scon pin drives)
13 FNADDR 00000000 | USB Function Address
14 I NO7VAL 01010111 | EPO,1,2,4,6 INvalid
15 QUTO7VAL 01010101 | EPO, 2,4,6 OUT valid
16 I NI SOVAL 00000111 | EP8,9,10 IN valid
17 QUTI SOVAL 00000111 | EP8S8QUT, EPOQUT, EP10QUT valid
18 USBPAI R 0x000000 | I SOsend0 (b7) = 0, no pairing
19 USBBAV 00000000 | Break condition cleared, no Autovector
20 Configuration 0 Internal EZ-USB core val ue
21 Alternate Setting | O Internal EZ-USB core val ue

*NOTE: When the 8051 is released fromreset, the EZ-USB automatically arns

the Bul k OQUT endpoints by setting their CS registers to 00000010b.

EZ-USB TRM YV 1.51

From Table 10-1, at power-on:

Endpoint data buffers and byte counts are un-initialized (1,2).

The 8051 is held in reset, and the CLK24 pin is enabled (3).

All port pins are configured as input ports (4-6).

USB interrupts are disabled, and USB interrupt requests are cleared (7-8).

Bulk IN and OUT endpoints are unarmed, and their stall bits are cleared (9). The EZ-
USB core will NAK IN or OUT tokens while the 8051 isreset. OUT endpoints are
enabled when the 8051 is released from reset.

Endpoint toggle bits are cleared (11).

The RENUM bhit is cleared. This means that the EZ-USB core, and not the 8051,
initially responds to USB device requests. (12).

The USB function address register is set to zero (13).

Chapter 10. EZ-USB Resets Page 148

The endpoint valid bits are set to match the endpoints used by the default Anchor
device (14-17).

Endpoint pairing isdisabled. Also, ISOSend0=0, meaning that if an Isochronous
endpoint receives an IN token without being loaded by the 8051 in the previous
frame, the EZ-USB core does not generate any response (18).

The breakpoint condition is cleared, and autotovectoring is turned off (19)
Configuration Zero, Alternate Setting Zero is in effect (20-21).

10.3 Releasing the 8051 Reset

The EZ-USB register bit CPUCS.0 resets the 8051. Thisbit isHI at power-on, initially
holding the 8051 in reset. There are three ways to release the 8051 from reset:

By the host, as the final step of a RAM download.
Automatically, as part of an EEPROM |oad.
Automatically, when external ROM is used (EA=1)

10.3.1 RAM Download

Once enumerated, the host can download code into the EZ-USB RAM using the “ Anchor
Load” vendor request (Chapter 7, “EZ-USB Endpoint Zero”). The last packet |oaded
writes 0 to the CPUCS register, which clears the 8051 RESET hit.

NOTE: The other bit in the CPUCS register, CLK240E, is writeable only by the 8051, so
the host writing a zero byte to this register does not turn off the CLK24 signal.

10.3.2 EEPROM L oad

Chapter 5 describes the EEPROM boot loads in detail. Briefly, at power-on the EZ-USB
core checks for the presence of an EEPROM on its 1°C bus. If found, it reads the first
EEPROM byte. If it reads 0xB2 asthe first byte, the EZ-USB core downloads 8051 code
from the EEPROM into internal RAM. The last byte of a“B2 load” writes 0x00 to the
CPUCS register (at 0x7F92), which releases the 8051 from reset.

10.3.3 External ROM

EZ-USB systems can use external program memory containing 8051 code and USB
device descriptors which include the VID/DID/PID bytes. Since these systems do not
require an 1°C EEPROM to supply the VID/DID/PID, the EZ-USB core automatically
releases 8051 reset when:

1. EA=1 (External code memory), and

EZ-USB TRM V 1.51 Chapter 10. EZ-USB Resets Page 149

2. No*“B0/B2’ EEPROM is detected on the I>C bus

The EZ-USB core also sets the ReNUM bit to “1”, giving USB control to the 8051.

10.4 8051 Reset Effects

Once the 8051 is running, the USB host may reset the 8051 by downloading the value
0x01 to the CPUCS register. The host might do thisin preparation for loading code
overlays, effectively magnifying the size of the internal EZ-USB RAM. For such
applications it is important to know the state of the EZ-USB chip during and after an
8051 reset. In this section, this particular reset is called an “8051 Reset”, and should not
be confused with the Power-On Reset described in the previous section. This discussion
applies only to the condition where the EZ-USB chip is powered, and the 8051 is reset by
the host setting the CPUCS register to O.

The basic USB device configuration remains intact through an 8051 reset. Valid
endpoints remain valid, the USB function address remains the same, and the 10 ports
retain their configurations and values. Stalled endpoints remain stalled, and data toggles
don’t change. The only effects of an 8051 reset are as follows:

1. USB interrupts are disabled, but pending interrupt requests remain pending.

2. During the 8051 Reset, all bulk endpoints are unarmed, causing the EZ-USB core
to NAK any IN or OUT tokens.

3. After the 8051 Reset isremoved, the OUT bulk endpoints are automatically
armed. OUT endpoints are thus ready to accept one OUT packet before 8051
intervention is required.

4. The breakpoint condition is cleared.

The ReNum bit is not affected by an 8051 reset.

When the 8051 comes out of reset, the pending interrupts are kept pending, but disabled
(2). This gives the firmware writer the choice of acting on pre-8051-reset USB events, or
ignoring them by clearing the pending interrupt(s).

During the 8051 reset time, the EZ-USB core holds off any USB traffic by NAK’ing IN
and OUT tokens (2). The EZ-USB core automatically arms the OUT endpoints when the
8051 exits the reset state (3).

USBBAV .3, the breakpoint BREAK hit, is cleared (4). The other bitsin the USBBAV
register are unaffected.

10.5 USB BusRESET

EZ-USB TRM V 1.51 Chapter 10. EZ-USB Resets Page 150

The host signals a USB Bus Reset by driving an SEO state (both D+ and D- datalines

low) for aminimum of 10 milliseconds. The EZ-USB core senses this condition,

requests the 8051 USB Interrupt (INT2), and supplies the interrupt vector for a USB

Resat. A USB reset affects the EZ-USB resources as shown in Table 10-2.

Table 10-2. EZ-USB states after a USB bus reset

Iltem | Register Default Comment
Value
1 Endpt Data uuuuuuuu | u = unchanged
2 Byte Counts uuuuuuuu
3 CPUCS uuuuuuuu
4 PORT Confi gs uuuuuuuu
5 PORT Regi sters uuuuuuuu
6 PORT CE' s uuuuuuuu
7 I nterrupt Enabl es | uuuuuuuu
8 Interrupt Req's uuuuuuuu
9 Bulk INCS 00000000 | unarm
10 Bul k QUT C'S uuuuuuuu | retain arned/ unarned state
11 Toggl e bits 00000000
12 USBCS uuuuuuuu | ReNum bit unchanged
13 FNADDR 00000000 | USB Functi on Address
14 I NO7VAL uuuuuuuu
15 OUTO7VAL uuuuuuuu
16 I NI SOVAL uuuuuuuu
17 QOUTI SOVAL uuuuuuuu
18 USBPAI R uuuuuuuu
19 Configuration 0
20 Alternate Setting |0

A USB bus reset leaves most EZ-USB resources unchanged. From Table 10-2, after a

USB bus reset:

The EZ-USB core “unarms’ al Bulk IN endpoints (9). Dataloaded by the 8051
into an IN endpoint buffer remains there, and the 8051 firmware can either re-
send it by loading the endpoint byte count register to re-arm the transfer, or send

new data by re-loading the IN buffer before re-arming the endpoint.

Bulk OUT endpoints retain their “busy” states (10). Data sent by the host to an
OUT endpoint buffer remains in the buffer, and the 8051 firmware can either read
the data or rgject it as “stale” ssmply by not reading it. In either case the 8051
loads a dummy value to the endpoint byte count register to re-arm OUT transfers.

Toggle bits are cleared (11).

The device address is reset to zero (13).

EZ-USB TRM YV 1.51

Chapter 10. EZ-USB Resets

Page 151

Note from item 12 that the RENUM bit is unchanged after a USB busreset. Therefore, if
a device has ReNumerated™ and |loaded a new personality, it retains the new personality
through a USB bus reset.

10.6 EZ-USB Disconnect

Table 10-3. Effects of an EZ-USB disconnect and re-connect

Item | Register Default Comment
Value
1 Endpt Dat a uuuuuuuu | u = unchanged
2 Byt e Counts uuuuuuuu
3 CPUCS uuuuuuuu
4 PORT Confi gs uuuuuuuu
5 PORT Regi sters uuuuuuuu
6 PORT CE' s uuuuuuuu
7 I nterrupt Enabl es | uuuuuuuu
8 Interrupt Req's uuuuuuuu
9 Bulk INCS 00000000 | Unarm clear stall bit
10 Bul k QUT TS 00000010 | Arm clear stall bit
11 Toggl e bits 00000000 | reset
12 USBCS uuuuuuuu | ReNum bit unchanged
13 FNADDR 00000000 | USB Function Address
14 I NO7VAL uuuuuuuu
15 QUTO7VAL uuuuuuuu
16 I NI SOVAL uuuuuuuu
17 QUTI SOVAL uuuuuuuu
18 USBPAI R uuuuuuuu
19 Configuration 0
20 Alternate Setting | O

Although not strictly a‘reset’, when the EZ-USB simulates a disconnect-reconnect in
order to ReNumerate™, there are effects on the EZ-USB core:

Bulk IN endpoints are unarmed, and bulk OUT endpoints are armed (9-10).
Endpoint STALL bits are cleared (9-10).

Datatoggles arereset (11).

The function address is reset to zero (13).

The configuration is reset to zero (19).

Alternate settings are reset to zero (20).

EZ-USB TRM V 1.51 Chapter 10. EZ-USB Resets Page 152

10.7 RESET Summary

Table 10-4. Effects of various EZ-UB resets. “ U” means “ unaffected”

Resource RESET USB Bus Disconnect 8051
pin Reset Reset

8051 reset reset U U N/A
EPO-7IN EP's unarm unarm unarm unarm
EPO-7 OUT EP's unarm U arm unarm/arm
Breakpoint reset U U reset
Stall bits reset U reset U
Interrupt Enables reset U U reset
Interrupt Req's reset U U U
CLK24 run U U U
Data Toggles reset reset reset U
Function Address reset reset reset U
Configuration 0 0 0 U
ReNum bit 0 U U U

Table 10-4 summarizes the effects of the four EZ-USB resets.

Note: The I°C controller is not reset for any of the above conditions. It isreset only by

the EZ-USB RESET pin.

EZ-USB TRM YV 1.51 Chapter 10. EZ-USB Resets

Page 153

11 EZ-USB Power M anagement

11.1 Introduction

The USB host can suspend a device to put it into a power-down mode. When the USB
signals a SUSPEND operation, the EZ-USB chip goes through a sequence of stepsto
allow the 8051 to first turn off external power-consuming subsystems, and then enter an
ultra-low-power mode by turning off its oscillator. Once suspended, the EZ-USB chip is
awakened either by resumption of USB bus activity, or by assertion of its WAKEUP#
pin. This chapter describes the suspend-resume mechanism.

12 MHz

[

WAKEUP pin :) >
START—p .
USB Resume : STOP Oscillator

PLL

Restart 48 QAHZ
Delay
div by
2
[CLK24

——PCON.0—
Signal
------ Resume INT----p{ 8051 |——» Resume

(USBCS.0)
USB /
No USB activity "SUSPEND"
for 3 msec.
Interrupt

Figure 11-1. Suspend-Resume Control

Figure 11-1 illustrates the EZ-USB logic that implements USB suspend and resume.
These operations are explained in the next sections.

EZ-USB TRM V 1.51 Chapter 11. EZ-USB Power Management Page 154

11.2 Suspend

12 MHz

Sl

——STOP—9»{ Oscillator

PLL

48 MHz

div by

+——s{ciai]

PCON.O
8051

INT2

usB
No USB activity SUSPEND
for 3 msec.
Interrupt

Figure 11-2. EZ-USB Quspend sequence

A USB devices recognizes SUSPEND as three milliseconds of abusidle (“J’) state. The
EZ-USB core alerts the 8051 by asserting the USB (INT2) interrupt and the SUSPEND
interrupt vector. This gives the 8051 code a chance to perform power conservation
housekeeping before shutting down the oscillator.

The 8051 code responds to the SUSPEND interrupt by taking the following steps:

1. Performs any necessary housekeeping such as shutting off external power-
consuming devices.

2. Sets bit 0 of the PCON SFR (Specia Function Register). This has two effects:
The 8051 enters its “idle” mode, which is exited by any interrupt.
The 8051 sends an internal signal to the EZ-USB core which causesit to turn

off the oscillator and PLL.

These actions put the EZ-USB chip into alow power mode, as required by the USB
Specification.

EZ-USB TRM V 1.51 Chapter 11. EZ-USB Power Management Page 155

11.3 Resume

12 MHz

[

WAKEUP# pin:) > .
USB Resume START— (cillator
PLL
I
Restart 48 QAHZ
Delay
div by
2
¢——s[oied]
Signal
——Resume INT—p] 8051 P Resume
(USBCS.0)
Figure 11-3. EZ-US Resume sequence
The EZ-USB oscillator re-starts when:
A. USB bus activity resumes (shown as “USB Resume’ in Figure 11-3), or

B. External logic asserts the EZ-USB WAKEUP# pin low.

After an oscillator stabilization time, the EZ-USB core asserts the 8051 Resume interrupt
(Figure 9-1, page 136). This causes the 8051 to exit its ‘idle’ mode. The Resume
interrupt is the highest priority 8051 interrupt. It is always enabled, unaffected by the EA
bit.

The resume ISR clears the interrupt request flag, and executes an ‘reti’ (return from
interrupt) instruction. This causes the 8051 to continue program execution at the
instruction following the one that set PCON.O to initiate the suspend operation.

About the ‘resume’ interrupt

The 8051 enters the idle mode when PCON.O is set to 1. Although the 8051 exitsitsidle
state when any interrupt occurs, the EZ-USB logic supports only the RESUME interrupt
for the USB resume operation. Thisis because the EZ-USB core asserts this particular
interrupt after restarting the 8051 clock.

EZ-USB TRM V 1.51 Chapter 11. EZ-USB Power Management Page 156

11.4 Remote Wakeup

USBCS USB Control and Status 7FD6
b7 b6 b5 b4 b3 b2 bl b0
WAKESRC - - - SIGRSUME

Figure 11-4. USB Control and Satus register

Two bitsin the USBCS register are used for remote wakeup, WAKESRC and
SIGRSUME.

After exiting the idle state, the 8051 reads the WAKESRC bit in the USBCS register to
discover how the wakeup was initiated. WAKESRC=1 indicates assertion of the
WAKEUP# pin, and WAKESRC=0 indicates a resumption of USB bus activity. The
8051 clears the WAKESRC bit by writinga“1” toit.

NOTE:
Holding the WAKEUP# pin low inhibits the EZ-USB chip from suspending.

When a USB device is suspended, the hub driver is tri-stated, and the bus pullup and
pulldown resistors cause the bus to assume the “J’, or idle state. A suspended device
signals aremote wakeup by asserting the “K” state for 10-15 milliseconds. The 8051
controls this using the SSIGRSUME bit in the USBCS register.

If the 8051 finds WAKESRC-=1 &fter exiting the idle mode, it drives the “K” state for 10-
15 milliseconds to signal the USB remote wakeup. It does this by setting SIGRSUME
=1, waiting 10-15 milliseconds, and then setting SIGRSUME=0. When SIGRSUME=0,
the EZ-USB bus buffer reverts to normal operation. The resume routine should also
writea“1” to the WAKESRC hit to clear it.

J and K States

The USB Specification uses differential data signals D+ and D-. Instead of defining a
logical “1” and “0”, it definesthe“J’ and “K” states. For ahigh speed device, the“J’
state means (D+ > D-), and the “K” state means the opposite, (D+ < D-).

EZ-USB TRM V 1.51 Chapter 11. EZ-USB Power Management Page 157

The Anchor Default device does not support remote wakeup. This fact is reported at
enumeration time in byte 7 of the built-in Configuration Descriptor (Table 5-10 on page
64).

Remote Wakeup: The Big Picture

Additional factors besides the EZ-USB suspend-resume mechanism described in this
section determine whether remote wakeup is possible. These are:

1. The device must report that it is capable of signaling a remote wakeup in the
“bAttributes’ field of its Configuration Descriptor. See Table 5-10 for an
example of this descriptor.

2. The host must issue a“Set_Feature/Device” request with the feature selector field
set to 0x01 to enable remote wakeup. See Table 7-6 on page 106 for the detailed
request.

EZ-USB TRM V 1.51 Chapter 11. EZ-USB Power Management Page 158

12 EZ-USB Registers

12.1 Introduction

This section describes the EZ-USB registers in the order they appear in the EZ-USB
memory map. The registers are named according to the following conventions.

Most registers deal with endpoints. The general register format is DDDnFFF, where
DDD isendpoint direction, IN or OUT with respect to the USB host

n is the endpoint number, where:
“07” refersto endpoints 0-7 as a group
0-7 refersto each individual BULK/INTERRUPT/CONTROL endpoint
“1SO” indicates isochronous endpoints as a group

FFF isthe function, where:
- CSisacontrol and status register
IRQ isan Interrupt Request bit
|E is an Interrupt Enable bit
BC, BCL, BCH are byte count registers. BC is used for single byte counts,
and BCL/H are used as the low and high bytes of 16-bit byte counts.
DATA isasingle-register accessto a FIFO
BUF isthe start address of a buffer

Examples:
IN7BC isthe Endpoint 7 IN byte count.
OUTO7IRQ is the register containing interrupt request bits for OUT endpoints O-7.

INISOVAL contains valid bits for the isochronous IN endpoints (EPSIN-EP15IN).

Other conventions:

USB indicates a global (not endpoint-specific) USB function
ADDR isan address

VAL means ‘valid’

FRAME is aframe count

PTR is an address pointer

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 159

Register Name Register Function Address
b7 b6 b5 b4 b3 b2 b1 b0
bitname bitname bitname bitname bitname bitname bitname bitname
R,W access R,W access R,W access R,W access R,W access R,W access R,W access R,W access
Default val Default val Default val Default val Default val Default val Default val Default val

Figure 12-1. Register description format

Figure 12-1 illustrates the register description format used in this chapter.

The top line shows the register name, functional description, and address in the
EZ-USB memory.

The second line shows the bit position in the register.

The third line shows the name of each bit in the register.

The fourth line shows 8051 accessibility: R(ead), W(rite), or R/W.

Thefifth line shows the default value. These values apply after a power-on reset.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 160

12.2 Bulk Data Buffers

INNBUF,OUTNnBUF Endpoint 0-7 IN/OUT Data Buffers 1B40-1F3F*
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X

Table 12-1. Bulk endpoint buffer memory addresses

X X
* See Table 12-1 for individual en

dpoint buffer addresses.

Address Address Name Size
1F00-1F3F 7F00-7F3F INOBUF 64
1ECO-1EFF 7ECO-7EFF OUTOBUF | 64
1E80-1EBF 7E80-7EBF IN1IBUF 64
1E40-1E7F 7E40-7TE7F OUTI1BUF | 64
1E00-1E3F 7EQ0-7E3F IN2BUF 64
1DCO-1DFF | 7DCO-7DFF | OUT2BUF | 64
1D80-1DBF | 7D80-7DBF IN3BUF 64
1D40-1D7F 7D40-7D7F OUT3BUF | 64
1D00-1D3F 7D00-7D3F INABUF 64
1CCO0-1CFF 7CCO-7CFF | OUT4BUF | 64
1C80-1CBF 7C80-7CBF INSBUF 64
1C40-1C7F 7C40-7C7F OUT5BUF | 64
1C00-1C3F 7C00-7C3F IN6BUF 64
1BCO-1BFF 7BCO-7BFF OUT6BUF | 64
1B80-1BBF 7B80-7BBF IN7TBUF 64
1B40-1B7F 7B40-7B7F OUT7BUF | 64

Sixteen 64-byte bulk data buffers appear at 0x1B40 and 0x7B40 in the 8K version of EZ-
USB, and only at 0x7B40 in the 32K version of EZ-USB. The endpoints are ordered to
permit the reuse of the buffer space as contiguous RAM when the higher numbered

endpoints are not used. These registers default to unknown states.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 161

12.3 Isochronous Data FIFOS

OUTNDATA EPSOUT-EP150UT FIFO Registers 7F60-7F67*
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R R R R R R R R
X X X X X X X X
INNDATA EP8IN-EP15IN FIFO Registers 7F68-7TF6F*
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
W W W W W W W W
X X X X X X X X

* See Table 12-2 for individual endpoint buffer addresses.

Table 12-2. Isochronous endpoint FIFO register addresses

Address I sochronous Data Name
7F60 Endpoint 8 OUT Data OUTS8DATA
7F61 Endpoint 9 OUT Data OUT9DATA
7F62 Endpoint 10 OUT Data | OUT10DATA
7F63 Endpoint 11 OUT Data | OUT11DATA
7F64 Endpoint 12 OUT Data | OUT12DATA
7F65 Endpoint 13 OUT Data | OUT13DATA
7F66 Endpoint 14 OUT Data | OUT14DATA
7F67 Endpoint 15 OUT Data | OUT15DATA
7F68 Endpoint 8 IN Data INSDATA
7F69 Endpoint 9 IN Data IN9DATA
7TF6A Endpoint 10 IN Data INIODATA
7F6B Endpoint 11 IN Data IN11IDATA
7F6C Endpoint 12 IN Data IN12DATA
7F6D Endpoint 13 IN Data IN1I3DATA
7F6E Endpoint 14 IN Data IN14ADATA
7F6F Endpoint 15 IN Data INISDATA

Sixteen addressable data registers hold data from the eight isochronous IN endpoints and
the eight isochronous OUT endpoints. Reading a Data Register reads a Receive FIFO
byte (USB OUT data); writing a Data Register loads a Transmit FIFO byte (USB IN

data).

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 162

12.4 1sochronous Byte Counts

OUTNBCH OUT (8-15) Byte Count High 7F70-7TF 7F*
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 0 BC9 BC8
R R R R R R R R
X X X X X X X X
OUTNnBCL OUT (8-15) Byte Count L ow 7F70-7TF 7F*
b7 b6 b5 b4 b3 b2 bl b0
BC7 BC6 BC5 BC4 BC3 BC2 BC1 BCO
R R R R R R R R
X X X X X X X X

* See Table 12-3 for individual endpoint buffer addresses.

Table 12-3. Isochronous endpoint Byte Count Register addresses

Address | Isochronous Byte Counts Name

7F70 Endpoint 8 Byte Count High OUT8BCH

7F71 Endpoint 8 Byte Count Low OUT8BCL

TF72 Endpoint 9 Byte Count High OUT9BCH

7F73 Endpoint 9 Byte Count Low OUT9BCL

TF74 Endpoint 10 Byte Count High OUT10BCH
7F75 Endpoint 10 Byte Count Low OUT10BCL
TF76 Endpoint 11 Byte Count High OUT11BCH
TF77 Endpoint 11 Byte Count Low OUT11BCL
7F78 Endpoint 12 Byte Count High OUT12BCH
7F79 Endpoint 12 Byte Count Low OUT12BCL
TF7A Endpoint 13 Byte Count High OUT13BCH
7F7B Endpoint 13 Byte Count Low OUT13BCL
7F7C Endpoint 14 Byte Count High OUT14BCH
7F7D Endpoint 14 Byte Count Low OUT14BCL
TF7E Endpoint 15 Byte Count High OUT15BCH
TF7F Endpoint 15 Byte Count Low OUT15BCL

The EZ-USB core uses the byte count registers to report isochronous data payload sizes
for OUT data transferred from the host to the Anchor USB core. Ten bits of byte count
data allow payload sizes up to 1023 bytes. A byte count of zero is valid, meaning that the
host sent no isochronous data during the previous frame. The default values of these

registers are unknown.

Byte counts are valid only for OUT endpoints. The byte counts indicate the number of

bytes remaining in the endpoint’s Receive FIFO. Every time the 8051 reads a byte from
the ISODATA register, the byte count decrements by one.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 163

To read USB OUT data, the 8051 first reads byte count registers OUTnBCL and
OUTNBCH to determine how many bytes to transfer out of the OUT FIFO. (The 8051
can also quickly test 1SO output endpoints for zero byte counts using the ZBCOUT
register.) Then the CPU reads that number of bytes from the ISODATA register.
Separate byte counts are maintained for each endpoint, so the CPU can read the FIFOS in
adiscontinuous manner. For example, if EP8 indicates a byte count of 100, and EP9
indicates a byte count of 50, the CPU could read 50 bytes from EP8, then read 10 bytes
from EP9, and resume reading EP8. At this moment the byte count for EP8 would read
50.

There are no byte count registers for the IN endpoints. The USB core automatically
tracks the number of bytes loaded by the 8051.

If the 8051 does not load an IN isochronous endpoint FIFO during a 1 millisecond frame,
and the host requests data from that endpoint during the next frame (IN token), the
Anchor USB Core responds according to the setting of the ISOSENDO bit (USBPAIR.7).
IF ISOSENDO=1, the core returns a zero-length data packet in response to the host IN
token. If ISOSEND=0, the core does not respond to the IN token.

It is the responsibility of the 8051 programmer to insure that the number of bytes written

to the IN FIFO does not exceed the maximum packet size as reported during
enumeration.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 164

125 CPU Registers

CPUCS CPU Control and Status 7F92
b7 b6 b5 b4 b3 b2 bl b0
RV3 RV2 RV1 RVO 0 0 CLK240E | 8051RES
R R R R R R R/W R
RV3 RV2 RV1 RVO 0 0 1 1

This register enables the CLK24 output and permits the host to reset the 8051 using an
Anchor download.

Bit 7-4: RV[3..0] Slicon Revision

These register bits define the silicon revision. Consult individual Anchor Chips data
sheets for values.

Bit 1 CLK240E Output enable — CLK24 pin

When this bit is set to 1, the internal 24 MHz clock is connected to the EZ-USB CLK 24
pin. When thisbit is 0, the CLK24 pin drives HI. This bit can be written by the 8051
only.

Bit O: 8051RES 8051 reset

The USB host writes “1” to this bit to reset the 8051, and “0” to run the 8051. Only the
USB host can write this bit.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 165

12.6 Port configuration

PORTACFG 1O Port A Configuration 7F93
b7 b6 b5 b4 b3 b2 bl b0
RxD1OUT | RxDOOUT FRD FWR cs OE T10UT TOOUT
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
PORTBCFG 1O Port B Configuration 7F94
b7 b6 b5 b4 b3 b2 bl b0
T20UT INT6 INT5 INT4 TXD1 RXD1 T2EX T2
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
PORTCCFG IO Port C Configuration 7F95
b7 b6 b5 b4 b3 b2 bl b0
RD WR T1 TO INT1 INTO TXDO RXDO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

These three registers control the three O ports on the EZ-USB chip. They select between
IO ports and various alternate functions. They are read/write by the 8051.

When PORTNCFG=0, the port pin functions as 10, using the OUT, PINS and OE control
bits. Datawritten to an OUTn registers appears on an 10 Port pin if the corresponding
output enable bit (OEn) isHI.

When PORTNCFG=1, the pin assumes the aternate function shown in Table 12-4 (next

page).

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 166

Table 12-4. 10 Pin alternate functions

10 Name Alternate Function

PAO | TOOUT Timer 0 output

PA1 | TIOUT Timer 1 output

PA2 | OE# External memory Output Enable

PA3 | CSH External memory Chip Select

PA4 | FWR# Fast access Write strobe

PA5 | FRD# Fast access Read strobe

PA6 | RXDOOUT | UARTO synchronous (mode 0) data output
PA7 | RXD1OUT | UART1 synchronous (mode 0) data output
PBO | T2 Timer/Counter 2 clock input

PB1 | T2EX Timer 2 capture/reload input

PB2 | RxD1 Seria Port 1 input

PB3 | TxD1 Serial Port 1 data (modes 1-3) or clock (mode 0) output
PB4 | INT4 INT4 Interrupt Request

PB5 | INT5# INTS Interrupt Request

PB6 | INT6 INT4 interrupt Request

PB7 | T20UT Timer 2 overflow indication

PCO | RxDO Serial Port 0 Input

PC1 | TxDO Serial Port 0 data (modes 1-3) or clock (mode 0) output
PC2 | INTO# INTO interrupt request

PC3 | INT1# INT1 interrupt request

PC4 | TO Timer/Counter 0 external input

PC5 | T1 Timer/Counter 1 external input

PC6 | WR# External Memory Write Strobe

PC7 | RD# External Memory Read Strobe

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 167

12.7 Input-Output Port Registers

OUTA Port A Outputs 7TF96
b7 b6 b5 b4 b3 b2 bl b0
OUTA7 | OUTA6 | OUTA5 | OUTA4 | OUTA3 | OUTA2 | OUTA1l | OUTAO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
ouTB Port B Outputs TF97
b7 b6 b5 b4 b3 b2 bl b0
OUTBY OuUTB6 OUTBS5 OuUTB4 OUTB3 ouTB2 OuUTB1 OUTBO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
ouTC Port C Outputs 7F98
b7 b6 b5 b4 b3 b2 bl b0
OUTC7 | OUTC6 | OUTC5 | OUTC4 | OUTC3 | OUTC2 | OUTCl1 | OUTCO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

The OUTn registers provide the data that drives the port pin when OE=1 and the
PORTNCFG pinisO. If the port pin is selected as an input (OE=0), the value stored in

the corresponding OUTn bit is stored in an output latch but not used.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 168

PINSA Port A Pins 7F99
b7 b6 b5 b4 b3 b2 bl b0
PINA7 PINAG6 PINA5S PINA4 PINA3 PINA2 PINA1 PINAO
R R R R R R R R
X X X X X X X X
PINSB Port B Pins 7TF9A
b7 b6 b5 b4 b3 b2 bl b0
PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINBO
R R R R R R R R
X X X X X X X X
PINSC Port C Pins 7F9B
b7 b6 b5 b4 b3 b2 bl b0
PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINCO

The PINSh registers contain the current value of the port pins, whether they are selected
as 1O ports or aternate functions.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 169

OEA Port A Output Enable 7F9C
b7 b6 b5 b4 b3 b2 bl b0
OEA7 OEAG6 OEA5 OEA4 OEA3 OEA2 OEA1 OEAO0
R R R R R R R R
X X X X X X X X
OEB Port B Output Enable 7F9D
b7 b6 b5 b4 b3 b2 bl b0
OEB7 OEB6 OEB5 OEB4 OEB3 OEB2 OEB1 OEBO
R R R R R R R R
X X X X X X X X
OEC Port C Output Enable 7TF9E
b7 b6 b5 b4 b3 b2 bl b0
OEC7 OEC6 OEC5 OEC4 OEC3 OEC2 OEC1 OECO

The OE registers control the output enables on the tri-state drivers connected to the port
pins. When these bitsare‘1’, the port is an output, unless the corresponding PORTnCFG
bitissettoa‘l’.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 170

12.8 Isochronous Control/Status Registers

| SOERR | sochronous OUT EP Error 7FAQ
b7 b6 b5 b4 b3 b2 bl b0
|SO15ERR |SO14ERR |SO13ERR ISO12ERR ISO11ERR |SO10ERR |SO9ERR |SO8ERR

R

R

R

R

R

R

R

R

X

X

X

X

X

X

X

X

The ISOERR bits are updated at every SOF. They indicate that a CRC error was
received on a data packet for the current frame. The ISOERR bit status refers to the USB
data received in the previous frame, and which is currently in the endpoint’'s OUT FIFO.
IF the ISOERR bit = 1, indicating a bad CRC check, the datais till available in the

OUTNDATA register.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 171

ISOCTL | sochr onous Control 7TFA1
b7 b6 b5 b4 b3 b2 bl b0
PPSTAT MBZ MBZ ISODISAB
R R R R R R/W R/W R/W
0 0 0 0 X 0 0 0
Bit 3: PPSTAT Ping-Pong Satus

This bit indicates the isochronous buffer currently in use by the EZ-USB core. It isused
only for diagnostic purposes.
Bits2,1:

MBZ Must be zero

These bits must aways be written with zeros.
Bit O: ISODISAB 1SO Endpoints Disable
|SODISAB=0 enables all sixteen isochronous endpoints.

|SODISAB=1 disables all sixteen isochronous endpoints, making the 2048 bytes of
isochronous FIFO memory available as 8051 data memory at 0x2000-0x27FF.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 172

ZBCOUT Zero Byte Count Bits TFA2
b7 b6 b5 b4 b3 b2 bl b0
EP15 EP14 EP13 EP12 EP11 EP10 EP9 EP8
R R R R R R R R
X X X X X X X X

Bit 0-7 EP(n) Zero Byte Count for 1SO OUT Endpoints

The 8051 can check these bits as afast way to check all of the OUT isochronous

endpoints at once for no data received during the previous frame. A 1in any bit position
means that a zero byte Isochronous OUT packet was received for the indicated endpoint.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 173

12.9 1°C Registers

12CS 12C Control and Status 7EA5S
b7 b6 b5 b4 b3 b2 bl b0
START STOP LASTRD ID1 I1DO BERR ACK DONE
R/IW R/IW R/IW R R R R R
0 0 0 X X 0 0 0
|2DAT 12C Data 7FA6
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/IW R/IW R/IW R/IW R/IW R/IW R/IW R/IW
X X X X X X X X

The 8051 uses these registers to transfer data over the EZ-USB 12C bus.
Bit 7: START Sgnal START condition

The 8051 sets the START bit to 1 to prepare an 1°C bus transfer. |If START=1, the next
8051 load to I2DAT will generate the start condition followed by the serialized byte of
datain I2DAT. The 8051 loads byte datainto I2DAT after setting the START bit. The
12C controller clears the START bit during the ACK interval.

Bit 6: STOP Sgnal STOP condition

The 8051 sets STOP=1 to terminate an 1°C bus transfer. The I°C controller clears the
STOP hit after completing the STOP condition. If the 8051 sets the STOP bit during a
byte transfer, the STOP condition will be generated immediately following the ACK
phase of the byte transfer. If no byte transfer is occurring when the STOP bit is set, the
STOP condition will be carried out immediately on the bus. Data should not be written
to 12CS or I2DAT until the STOP bit returns low.

Bit 5: LASTRD Last Data Read

To read data over the I1°C bus, an 1°C master floats the SDA line and issues clock pulses
on the SCL line. After every eight bits, the master drives SDA low for one clock to
indicate ACK. To signal the last byte of the read transfer, the master floats SDA at ACK
time to instruct the slave to stop sending. Thisis controlled by the 8051 by setting
LastRD=1 before reading the |ast byte of aread transfer. The I°C controller clears the
LastRD hit at the end of the transfer (at ACK time).

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 174

Note: Setting LastRD does not automatically generate a STOP condition. The 8051
should also set the STOP bit at the end of aread transfer.

Bit 4:3 ID1,1D0 Boot EEPROM ID

These bits are set by the boot |oader to indicate whether an 8-bit address or 16-bit address
EEPROM at dlave address 000 or 001 was detected at power-on. They are normally used
only for debug purposes.

Bit 2: BERR Bus Error

This bit indicates an 1°C bus error. BERR=1 indicates that there was bus contention,
which results when an outside device drives the bus LO when it shouldn’t, or when
another bus master wins arbitration, taking control of the bus. BERR is cleared when the
8051 reads or writes the IDATA register.

Bit 1 ACK Acknowledge bit

Every ninth SCL of awrite transfer the slave indicates reception of the byte by asserting
ACK. The EZ-USB controller floats SDA during this time, samples the SDA line, and
updates the ACK bit with the complement of the detected value. ACK=1 indicates
acknowledge, and ACK=0 indicates not-acknowledge. The EZ-USB core updates the
ACK bit at the same time it sets DONE=1. The ACK bit should be ignored for read
transfers on the bus.

Bit O: DONE I°C Transfer DONE
The I?C controller sets this bit whenever it completes a byte transfer, right after the ACK
stage. The controller also generates an 1°C interrupt request (8051 INT3) when it sets the

DONE bit. The I°C controller automatically clears the DONE bit and the I°C interrupt
request bit whenever the 8051 reads or writes the I2DAT register.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 175

12.10Interrupts

IVEC Interrupt Vector 7TFA8
b7 b6 b5 b4 b3 b2 bl b0
0 V4 V3 V2 V1 VO 0 0
R R R R R R R R
0 0 0 0 X 0 0 0

IVEC indicates the source of an interrupt from the Anchor USB Core. When the USB
core generates an INT2 (USB) interrupt request, it updates 1 VEC to indicate the source of
the interrupt. The twenty-one interrupt sources are encoded on 1V[4..0] as shownin

Figure 9-2 on page 138.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 176

INO7IRQ Endpoint 0-7 IN Interrupt Requests 7TFA9
b7 b6 b5 b4 b3 b2 bl b0
IN7IR IN6IR INSIR IN4IR IN3IR IN2IR IN1IR INOIR
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OUTO7IRQ Endpoint 0-7 OUT Interrupt Requests TFAA
b7 b6 b5 b4 b3 b2 bl b0
OUT7IR | OUT6IR | OUT5IR | OUT4IR | OUT3IR | OUT2IR | OUT1IR | OUTOIR
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

These interrupt request (IRQ) registers indicate the pending interrupts for each bulk
endpoint. An interrupt request (IR) bit becomes active when the BSY bit for an endpoint
makes a transition from one to zero (the endpoint becomes ‘un-busy’ giving access to the
8051). The IR bits function independently of the Interrupt Enable (IE) bits, so interrupt
requests are held whether or not the interrupts are enabled.

The 8051 clears an interrupt request bit by writinga ‘1’ to it (see note).

Note:

Do not clear an IRQ bit by reading an IRQ register, OR’ing its contents with a bit mask,
and writing back the IRQ register. Thiswill clear ALL pending interrupts. Instead,
simply write the bit mask value (with the IRQ you want to clear) directly to the IRQ

register.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 177

USBIRQ USB Interrupt Request 7FAB
b7 b6 b5 b4 b3 b2 bl b0
URESIR | SUSPIR | SUTOKIR | SOFIR | SUDAVIR
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

USBIRQ indicates the interrupt request status of the USB reset, suspend, setup token,
start of frame, and setup data available interrupts.
Bit 4.

URESIR USB Reset Interrupt Request

The EZ-USB core sets this bit to 1 when it detects a USB bus reset.

Since this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it isreset to 0 by a power-on reset. Write a1 to thisbit to
clear the interrupt request. See Chapter 10, EZ-USB Resets’ for more information about
this bit.

Bit 3: SUSPIR USB Suspend Interrupt Request

The EZ-USB core sets this bit to 1 when it detects USB SUSPEND signaling (no bus
activity for 3 milliseconds). Write a1 to this bit to clear the interrupt request.

Since this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it isreset to O by a power-on reset. See Chapter 11, “EZ-
USB Power Management” for more information about this bit.

Bit 2: SUTOKIR SETUP Token Interrupt Request

The EZ-USB core sets this bit to 1 when it receives a SETUP token. Write a1 to this bit
to clear the interrupt request. See Chapter 7, EZ-USB Endpoint Zero” for more
information on the handling of SETUP tokens.

Since this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it isreset to O by a power-on reset.

Bit 1 SOFIR Sart of frame Interrupt Request

The EZ-USB core sets this bit to 1 when it receives an SOF packet. Write a 1 to this bit to
clear the interrupt condition.

Since this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it isreset to O by a power-on reset.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 178

Bit O: SUDAVIR SETUP data available Interrupt Request

The EZ-USB core sets this bit to 1 when it has transferred the eight data bytes from an
endpoint zero SETUP packet into internal registers (at SETUPDAT). Write a 1 to this bit
to clear the interrupt condition.

Since this bit can change state while the 8051 is in reset, it may be active when the 8051
comes out of reset, although it isreset to O by a power-on reset.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 179

INO7IEN Endpoint O-7 IN Interrupt Enables 7TFAC
b7 b6 b5 b4 b3 b2 bl b0
IN7IEN INGEN INSIEN | IN4IEN | IN3IEN | IN2IEN | INOIEN | INOIEN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
OUTO7IEN Endpoint 0-7 OUT Interrupt Enables 7FAD
b7 b6 b5 b4 b3 b2 bl b0
OUT7IEN | OUTBIEN | OUT5IEN | OUT4IEN | OUT3IEN | OUT2IEN | OUTLIEN | OUTOIEN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

The Endpoint Interrupt Enable registers define which endpoints have active interrupts.
They do not affect the endpoint action, only the generation of an interrupt in response to
endpoint events.

When the IEN bit for an endpoint is 0, the interrupt request bit for that endpoint is
ignored, but saved. When the IEN bit for an endpoint is 1, any IRQ bit equal to 1
generates an 8051 INT2 request.

Note: The INT2 interrupt (EIE.O) and the 8051 global interrupt enable (EA) must be
enabled for the endpoint interrupts to propagate to the 8051. Once the INTZ2 interrupt is
active, it must be cleared by software.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 180

USBIEN USB Interrupt Enables TFAE
b7 b6 b5 b4 b3 b2 bl b0
URESIE | SUSPIE | SUTOKIE | SOFIE | SUDAVIE
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

USBIEN bits gate the interrupt requests to the 8051 for USB reset, suspend, SETUP
token, start of frame, and SETUP data available.

Bit 4 URESIE USB Reset Interrupt Enable

This bit is the interrupt mask for the URESIR bit. When this bit is 1, the interrupt is
enabled, when it is O, the interrupt is disabled.

Bit 3: SUSPIE USB Suspend Interrupt Enable

This bit is the interrupt mask for the SUSPIR bit. When thisbit is 1, the interrupt is
enabled, when it is O, the interrupt is disabled.

Bit 2: SUTOKIE SETUP Token Interrupt Enable

This bit is the interrupt mask for the SUTOKIR bit. When thishitis 1, theinterrupt is
enabled, when it is O, the interrupt is disabled.

Bit 1. SOFIE Sart of frame Interrupt Enable

This bit is the interrupt mask for the SOFIR bit. When thisbit is 1, the interrupt is
enabled, when it is O, the interrupt is disabled.

Bit O: SUDAVIE SETUP data available Interrupt Enable

This bit is the interrupt mask for the SUDAVIR bit. When thisbitis 1, theinterrupt is
enabled, when it is O, the interrupt is disabled.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers

Page 181

USBBAV Breakpoint and Autovector TFAF
b7 b6 b5 b4 b3 b2 bl b0
BREAK | BPPULSE | BPEN AVEN
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
Bit 3: BREAK Breakpoint Enable

The BREAK bit is set when the 8051 address bus matches the address held in the
breakpoint address registers (next page). The BKPT pin reflects the state of thisbit. The
8051 writes a 1 to the BREAK bit to clear it. It isnot necessary to clear the BREAK bit
if the pulse mode bit (BPPULSE) is set .

Bit 2: BPPULSE Breakpoint pulse mode

The 8051 setsthis bit to 1 to pulse the BREAK hit (and BKPT pin) high for 8 CLK24
cycles when the 8051 address bus matches the address held in the breakpoint address
registers. When thishitisset to ‘0’, the BREAK bit (and BKPT pin) remains high until it
is cleared by the 8051..
Bit 1: BPEN Breakpoint enable

If thishitis*1l, aBREAK signal is generated whenever the 16-bit address lines match
the value in the Breakpoint Address Registers (BPADDRH/L). The behavior of the
BREAK bit and associated BKPT pin signal is either latched or pulsed, depending on the
state of the BPPUL SE hit.

Bit O: AVEN Auto-vector enable

If thisbitis 1, the EZ-USB Auto-vector feature is enabled. If itisO, the auto-vector
featureisdisabled. See Chapter 9 for more information on the auto-vector feature.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 182

BPADDRH Breakpoint Address High 7FB2
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 A1l A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
BPADDRL Breakpoint AddressLow 7FB3
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0

When the current 16 bit address (code or xdata) matches the BPADDRH/BPADDRL
address, a breakpoint event occurs. The BPPUL SE and BPEN bits in the USBBAV
register control the action taken on a breakpoint event.

If the BPEN hit is O, address breakpoints are ignored. If BPEN is1 and BPPULSE is 1,
an 8 CLK24 wide pulse appears on the BKPT pin. If BPEN is1 and BPPULSE is O, the
BKPT pin remains active until the 8051 clears the BREAK bit by writing 1 to it.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 183

12.11 Endpoint 0 Control and Status Registers

EPOCS Endpoint Zero Control and Status 7FB4
b7 b6 b5 b4 b3 b2 bl b0
OouUTBSY INBSY HSNAK EPOSTALL
R R R R R R R/W R/W
0 0 0 0 1 0 0 0
INOBC Endpoint Zero IN Byte Count 7FB5
b7 b6 b5 b4 b3 b2 bl b0
BC6 BC5 BC4 BC3 BC2 BC1 BCO
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 0 0 0
ouToBC Endpoint Zero OUT Byte Count 7FC5
b7 b6 b5 b4 b3 b2 bl b0
BC6 BC5 BC4 BC3 BC2 BC1 BCO
R/W R/W R/W R/W R/W R/W R/W R/W

These registers control EZ-USB CONTROL endpoint zero. Because endpoint zero isa
bi-directional endpoint, the IN and OUT functionality is controlled by a single control
and status (CS) register, unlike endpoints 1-7, which have separate INCS and OUTCS

registers.

Bit 3:

OuUTBSY

OUT Endpoint Busy

OUTBSY isaread-only bit that is automatically cleared when a SETUP token arrives.
The 8051 sets the OUTBSY hit by writing a byte count to EPOUTBC.

If the CONTROL transfer uses an OUT data phase, the 8051 must load a dummy byte
count into OUTOBC to arm the OUT endpoint buffer. Until it does, the EZ-USB core
will NAK the OUT tokens.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 184

Bit 2: INBSY IN Endpoint Busy

INBSY isaread-only bit that is automatically cleared when a SETUP token arrives. The
8051 setsthe INBSY hit by writing a byte count to INOBC.

If the CONTROL transfer uses an IN data phase, the 8051 loads the requested data into
the INOBUF buffer, and then loads the byte count into INOBC to arm the data phase of
the CONTROL transfer. Alternatively, the 8051 can arm the data transfer by loading an
address into the Setup Data Pointer registers SUDPTRH/L. Until armed, the EZ-USB
core will NAK the IN tokens.

Bit 1: HSNAK Handshake NAK

HSNAK (Handshake NAK) is aread/write bit that is automatically set when a SETUP
token arrives. The 8051 clears HSNAK by writing a oneto the register bit.

While HSNAK=1, the EZ-USB core NAK'’s the handshake (status) phase of the

CONTROL transfer. When HSNAK=0, it ACK’s the handshake phase. The 8051 can
clear HSNAK at any time during a CONTROL transfer.

Bit O: EPOSTALL Endpoint Zero Stall

EPOSTALL isaread/write bit that is automatically cleared when a SETUP token arrives.
The 8051 sets EPOSTALL by writing a one to the register bit.

While EPOSTALL=1, the EZ-USB core sendsthe STALL PID for any IN or OUT token.
This can occur in either the data or handshake phase of the CONTROL transfer.

Note:

To indicate an endpoint stall on endpoint zero, set both EPOSTALL and HSNAK bhits.
Setting the EPOSTALL bit alone causes endpoint zero to NAK forever since the host
keeps the control transfer pending.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 185

12.12 Endpoint 1-7 Control and Status Registers

Endpoints 1-7 IN and 1-7 OUT are used for bulk or interrupt data. Table 12-5 shows the
addresses for the control/status and byte count registers associated with these endpoints.
The bi-directional CONTROL endpoint zero registers are described in the previous

section.

Table 12-5. Control and Status register addressess for endpoints 0-7

Address Function Name
7FB4 Control and Status — Endpoint INO EPOCS
7FB5 Byte Count — Endpoint INO INOBC
7FB6 Control and Status— Endpoint IN1 IN1CS
7FB7 Byte Count — Endpoint IN1 IN1IBC
7FB8 Control and Status— Endpoint IN2 IN2CS
7FB9 Byte Count — Endpoint IN2 IN2BC
7FBA Control and Status — Endpoint IN3 IN3CS
7FBB Byte Count — Endpoint IN3 IN3BC
7FBC Control and Status — Endpoint IN4 INACS
7FBD Byte Count — Endpoint IN4 INABC
7FBE Control and Status — Endpoint IN5 IN5SCS
7FBF Byte Count — Endpoint IN5 INSBC
7FCO Control and Status — Endpoint IN6 IN6CS
7FC1 Byte Count — Endpoint IN6 IN6BC
7FC2 Control and Status— Endpoint IN7 IN7CS
7FC3 Byte Count — Endpoint IN7 IN7BC
7FCA Reserved

7FC5 Byte Count — Endpoint OUTO OUTOBC
7FC6 Control and Status — Endpoint OUT1 OUTICS
7FC7 Byte Count — Endpoint OUT1 OUT1BC
7FC8 Control and Status — Endpoint OUT?2 OUT2CS
7FC9 Byte Count — Endpoint OUT2 OuUT2BC
7FCA Control and Status — Endpoint OUT3 OUT3CS
7FCB Byte Count — Endpoint OUT3 OUT3BC
7FCC Control and Status — Endpoint OUT4 OUT4ACS
7FCD Byte Count — Endpoint OUT4 QuU4TBC
7FCE Control and Status — Endpoint OUT5 OUT5CS
7FCF Byte Count — Endpoint OUT5 OUT5BC
7FDO Control and Status — Endpoint OUT6 OUT6CS
7FD1 Byte Count — Endpoint OUT6 OUT6BC
7FD2 Control and Status — Endpoint OUT7 OUT7CS
7FD3 Byte Count — Endpoint OUT7 OUT7BC

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 186

INNCS Endpoint (1-7) IN Control and Status 7FB6-7FC2*
b7 b6 b5 b4 b3 b2 bl b0
INNBSY | INnSTL
R R R R R R R RIW
0 0 0 0 0 0 0 0
* See Table 12-5 on page 186 for individual control/status register addresses.
Bit 1 INNBSY IN Endpoint (1-7) Busy

The“BSY” bit indicates the status of the endpoint’s IN Buffer INNnBUF. The EZ-USB
core sets BSY =0 when the endpoint’s IN buffer is empty and ready for loading by the
8051. The 8051 sets BSY =1 by loading the endpoint’s byte count register.

When BSY =1, the 8051 should not write datato an IN endpoint buffer, because the
endpoint FIFO could be in the act of transferring data to the host over the USB. BSY=0
when the USB IN transfer is complete and endpoint RAM data is available for 8051
access. USB IN tokens for the endpoint are NAK’ ed while BSY =0 (the 8051 is still
loading data into the endpoint buffer).

A 1-to-0 transition of BSY (indicating that the 8051 can access the buffer) generates an
interrupt request for the IN endpoint. After the 8051 writes the data to be transferred to
the IN endpoint buffer, it loads the endpoint’ s byte count register with the number of
bytes to transfer, which automatically sets BSY=1. Thisenablesthe IN transfer of datato
the host in response to the next IN token. Again, the CPU should never load endpoint
datawhile BSY =1.

The 8051 writesa“1” to an IN endpoint busy bit to dis-arm a previously armed endpoint.
The 8051 program should do this only after a USB bus reset, or when the host selects a
new interface or alternate setting that uses the endpoint. This prevents stale datafrom a
previous setting from being accepted by the host’sfirst IN transfer that uses the new
setting.

To disarm apaired IN endpoint, writea“1” to the busy bit for both endpointsin the pair.

Bit O: INNSTL IN Endpoint 1-7 Sall
The 8051 setsthisbit to 1 to “stall” an endpoint, and to O to clear a stall.

When the stall bit is 1, the EZ-USB core returns a STALL Handshake for all requests to
the endpoint. This notifies the host that something unexpected has happened.

The 8051 sets an endpoint’s stall bit under two circumstances:

1. The host sends a“Set_Feature—Endpoint Stall” request to the specific endpoint.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 187

2. The 8051 encounters any “show stopper” error on the endpoint, and sets the stall
bit to tell the host to halt traffic to the endpoint.

The 8051 clears an endpoint’s stall bit under two circumstances.

1. The host sends a“Clear_Feature—Endpoint Stall” request to the specific
endpoint.

2. The 8051 receives some other indication from the host that the stall should be
cleared (thisisreferred to as “host intervention” in the USB specification). This
indication could be a USB bus reset,

All stall bits are automatically cleared when the EZ-USB chip ReNumerates™ by
pulsing the DISCON bit HI.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 188

INNBC Endpoint (1-7) IN Byte Count TFB7-7TFC3*
b7 b6 b5 b4 b3 b2 bl b0
D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X

X
* See Table 12-5 on page 186 for individual byte count register addresses.

The 8051 writes this register with the number of bytesit loaded into the IN endpoint
buffer INNBUF. Writing thisregister also “arms’ the endpoint by setting the endpoint
BSY bitto 1.

Legal values for these registers are 0-64. A zero transfer size is used to terminate a
transfer that is an integral multiple of maxPacketSize. For example, a 256 byte transfer
with maxPacketSize = 64, would require four packets of 64 bytes each plus one packet of
0 bytes.

The IN byte count should never be written while the endpoint’s BUSY bit is set.

When the register pairing feature is used (Chapter 6, “EZ-USB BulkTransfers’) IN2BC is
used for the EP2/EP3 pair, INABC is used for the EP4/EPS pair, and IN6BC is used for
the EP6/EP7 pair. Inthe ‘paired’ (double-buffered) mode, after the first write to the
even-numbered byte count register, the endpoint BSY bit remains at O, indicating that
only one of the buffersisfull, and the other is still empty. The odd numbered byte count
register is not used when endpoints are paired.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 189

ouTnCS Endpoint (1-7) OUT Control/Status 7TFC6-7FD2*
b7 b6 b5 b4 b3 b2 bl b0
OUTNBSY | OUTNnSTL
R R R R R R R RIW
0 0 0 0 0 0 0 0
* See Table 12-5 on page 186 for individual control/status register addresses.
Bit 1 OUTnBSY OUT Endpoint (1-7) Busy

The“BSY” bit indicates the status of the endpoint’s OUT Buffer OUTnBUF. The EZ-
USB core sets BSY =0 when host data is available in the OUT buffer. The 8051 sets
BSY =1 by loading the endpoint’s byte count register.

When BSY =1, endpoint RAM data is invalid--the endpoint buffer has been emptied by
the 8051 and iswaiting for new OUT data from the host, or it is the process of being
loaded over the USB. BSY =0 when the USB OUT transfer is complete and endpoint
RAM datain OUTnBUF is available for the 8051 to read. USB OUT tokens for the
endpoint are NAK’ed while BSY =1 (the 8051 is still reading data from the OUT
endpoint).

A 1-to-0 transition of BSY (indicating that the 8051 can access the buffer) generates an
interrupt request for the OUT endpoint. After the 8051 reads the data from the OUT
endpoint buffer, it loads the endpoint’s byte count register with any value to re-arm the
endpoint, which automatically sets BSY=1. This enablesthe OUT transfer of data from
the host in response to the next OUT token. The CPU should never read endpoint data
while BSY=1.

Bit O: OUTnSTL OUT Endpoint (1-7) Sall
The 8051 setsthisbit to 1 to “stall” an endpoint, and to O to clear a stall.

When the stall bit is 1, the EZ-USB core returns a STALL Handshake for all requests to
the endpoint. This notifies the host that something unexpected has happened.

The 8051 sets an endpoint’s stall bit under two circumstances:
1. Thehost sends a“Set_Feature—Endpoint Stall” request to the specific endpoint.
2. The 8051 encounters any “show stopper” error on the endpoint, and sets the stall
bit to tell the host to halt traffic to the endpoint.

The 8051 clears an endpoint’s stall bit under two circumstances.

1. Thehost sendsa“Clear_Feature—Endpoint Stall” request to the specific
endpoint.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 190

2. The 8051 receives some other indication from the host that the stall should be
cleared (thisisreferred to as “host intervention” in the USB specification).

All stall bits are automatically cleared when the EZ-USB chip ReNumerates™.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 191

OuTnBC Endpoint (1-7) OUT Byte Count TFC7-7TFD3*
b7 b6 b5 b4 b3 b2 bl b0
D6 D5 D4 D3 D2 D1 DO
R R R R R R R R/W
0 0 0 0 0 0 0 0

* See Table 12-5 on page 186 for individual byte count register addresses.

The 8051 reads this register to determine the number of bytes sent to an OUT endpoint.
Legal sizesare O to 64 bytes.

Each EZ-USB bulk OUT endpoint has a byte count register, which serves two purposes.
The 8051 reads the byte count register to determine how many bytes were received
during the last OUT transfer from the host. The 8051 writes the byte count register (with
any value) to tell the EZ-USB core that it has finished reading bytes from the buffer,
making the buffer available to accept the next OUT transfer. Writing the byte count
register sets the endpoint’s BSY bit to 1.

When the register-pairing feature is used, OUT2BC is used for the EP2/EP3 pair,
OUT4BC is used for the EP4/EP5 pair, and OUT6BC is used for the EP6/EP7 pair. The
odd-numbered byte count registers should not be used. When the 8051 writes a byte to
the even numbered byte count register, the EZ-USB core switches buffers. If the other
buffer already contains data to be read by the 8051, the OUTnBSY bit remains at 0.

All OUT tokens are NAK’ ed until the 8051 isreleased from RESET, whereupon the
ACK/NAK behavior is based on pairing.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 192

12.13Global USB Registers

SUDPTRH Setup Data Pointer High 7FD4
b7 b6 b5 b4 b3 b2 bl b0
A15 Al4 A13 A12 All A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
SUDPTRL Setup Data Pointer Low 7FD5
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 A4 A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

When the EZ-USB chip receives a“ Get_Descriptor” request on endpoint zero, it can
instruct the EZ-USB core to handle the multi-packet IN transfer by loading these registers
with the address of an internal table containing the descriptor data.. The descriptor data
tables may be placed in internal program/data RAM or in unused Endpoint 0-7 RAM.

The SUDPTR does not operate with external memory. The SUDPTR registers should be
loaded in HIGH/LOW order.

In addition to loading SUDPTRL, the 8051 must also clear the HSNAK bit in the EPOCS
register (by writing a“1” toit) to complete the CONTROL transfer.

NOTE:

Any host request that uses the EZ-USB Setup Data Pointer to transfer IN data must
indicate the number of bytesto transfer in bytes 6 (wLengthL) and 7 (wLengthH) of the
SETUP packet. These bytes are pre-assigned in the USB specification to be length bytes
in all standard device requests such as “Get_Descriptor”. If vendor-specific requests are
used to transfer large blocks of data using the Setup Data Pointer, they must include this
pre-defined length field in bytes 6-7 to tell the EZ-USB core how many bytes to transfer
using the Setup Data Pointer.

Page 193

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers

USBCS USB Control and Status 7FD6
b7 b6 b5 b4 b3 b2 bl b0
WAKESRC DISCON DISCOE RENUM SIGRSUME
R/W R R R R/W R/W R/W R/W
0 0 0 0 0 1 0 0

Bit 7: WAKESRC Wakeup Source

This bit indicates that a high to low transition was detected on the WAKEUP# pin.
Writing a 1 to this bit resetsit to O.

Bit 3: DISCON Sgnal a Disconnect on the DISCON# pin

The EZ-USB DISCON# pin reflects the complement of thisbit. Thisbit is normally set
to 0 so that the action of the DISCOE bit (below) either floats the DISCON# pin or drives
it HI.

Bit 2: DISCOE Disconnect Output Enable

DISCOE controls the output buffer on the DISCON# pin. When DISCOE=0, the pin
floats, and when DISCOE=1 it drives to the complement of the DISCON bit (above).

DISCOE is used in conjunction with the RENUM bit to perform ReNumeration™
(Chapter 5).

Bit 1 RENUM ReNumerate™

This bit controls which entity, the USB core or the 8051, handles USB device requests.

When RENUM=0, the EZ-USB core handles all device requests. When RENUM=1, the
8051 handles al device requests except Set_ Address.

The 8051 sets RENUM=1 during a bus disconnect to transfer USB control to the 8051.
The EZ-USB core automatically sets RENUM=1 under two conditions:

1. Completion of a“B2” boot load (Chapter 5).
2. When external memory is used (EA=1) and no boot 1°C EEPROM is used
(Section 10.3.3).

Bit O: SIGRSUME Sgnal remote device resume

The 8051 sets SIGRSUME=1 to drive the “K” state onto the USB bus. This should be
done only by a device that is capable of remote wakeup, and then only during the
SUSPEND state. To signal RESUME, the 8051 sets SIGRSUME=1, waits 10-15
milliseconds, then sets SIGRSUME=0.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 194

TOGCTL Data Toggle Control TFD7
b7 b6 b5 b4 b3 b2 bl b0
S R 10 0 EP2 EP1 EPO
R R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
Bit 7: Q Data Toggle Value

Q=0 indicates DATAO and Q=1 indicates DATAL, for the endpoint selected by the IO
and EP[2..0] bits. The 8051 writes the endpoint select bits (10 and EP[2..0]), before
reading this value.
Bit 6: S Set Data Toggle to DATAL

After selecting the desired endpoint by writing the endpoint select bits (10 and EP[2..0])

the 8051 sets S=1 to set the datatoggle to DATAL. The endpoint selection bits should
not be changed while this bit is written.

NOTE:
At thiswriting there is no known reason to set an endpoint datatoggleto 1. Thishitis
provided for generality and testing only.

Bit 5: R Set Data Toggle to DATAO

After selecting the desired endpoint by writing the endpoint select bits (10 and EP[2..0])
the 8051 sets R=1 to set the data toggle to DATAO. The endpoint selection bits should
not be changed while this bit iswritten. For advice on when to reset the data toggle, see
Chapter 7, “EZ-USB Endpoint Zero”.

Bit 4 10 Sect IN or OUT endpoint

The 8051 sets this hit to select an endpoint direction prior to setting its R or S bit. 10=0
selects an OUT endpoint, 10=1 selects an IN endpoint.

Bit 2-0: EP Select Endpoint

The 8051 sets these bit to select an endpoint prior to setting its R or S bit. Valid values
are 0-7 to correspond to bulk endpoints INO-IN7 and OUTO-OUT?7.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 195

USBFRAMEL USB Frame Count L ow 7FD8
b7 b6 b5 b4 b3 b2 bl b0
FC7 FC6 FC5 Fc4 FC3 FC2 FC1 FCO
R R R R R R R R
X X X X X X X X
USBFRAMEH USB Frame Count High 7FD9
b7 b6 b5 b4 b3 b2 bl b0
0 0 0 0 0 FC10 FC9 FC8

R R R R R R R R
X X X X X X X X

Every millisecond the host sends a SOF token indicating “ Start Of Frame”, along with an
eleven-bit incrementing frame count. The EZ-USB copies the frame count into these

registers at every SOF. One use of the frame count is to respond to the USB
“SYNC_FRAME" request (Chapter 7, “EZ-USB Endpoint Zero).

If the Anchor USB core detects amissing or garbled SOF, it generates an internal SOF

and increments USBFRAMEL-USBFRAMEH.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 196

FNADDR Function Address 7FDB
b7 b6 b5 b4 b3 b2 bl b0
0 FAG FA5 FA4 FA3 FA2 FA1l FAO
R R R R R R R R
X X X X X X X X

During the USB enumeration process, the host sends a device a unique 7-bit address,
which the EZ-USB core copies into this register. Thereis normally no reason for the
CPU to know its USB device address since the Anchor Core automatically responds only

to its assigned address.

Note:

During ReNumeration™ the Anchor USB core sets register to O to allow the EZ-USB
chip to respond to the default address 0.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 197

USBPAIR USB Endpoint Pairing 7FDD
b7 b6 b5 b4 b3 b2 bl b0
ISOSENDO PR60OUT PR4OUT PR20OUT PR6IN PR4IN PR2IN
R/W R/W R/W R/W R/W R/W R/W R/W
0 X 0 0 0 0 0 0
Bit 7: | SOSENDO | sochronous Send Zero Length Data Packet

The ISOSENDO bit is used when the EZ-USB chip receives an isochronous IN token
whilethe IN FIFO isempty. If ISOSENDO=0 (the default value), the EZ-USB core does
not respond to the IN token. 1f ISOSENDO=1, the EZ-USB core sends a zero-length data
packet in response to the IN token. Which action to take depends on the overall system
design. The ISOSENDO bit applies to all of the isochronous IN endpoints, INSBUF
through IN15BUF.

Bit 5-3: PRnOUT Pair Bulk OUT Endpoints

Set the endpoint pairing bits (PRXOUT) to 1 to enable double-buffering of the bulk OUT
endpoint buffers. With double buffering enabled, the 8051 can operate on one buffer
while another is being transferred over USB. The endpoint busy and interrupt request
bits function identically, so the 8051 code requires no code modification to support
double buffering.

When an endpoint is paired, the 8051 uses only the even-numbered endpoint of the pair.
The 8051 should not use the paired odd endpoint’s IRQ, IEN, VALID bits or the buffer
associated with the odd numbered endpoint.

Bit2-0: PRnIN Pair Bulk IN Endpoints
Set the endpoint pairing bits (PRxIN) to 1 to enable double-buffering of the bulk IN
endpoint buffers. With double buffering enabled, the 8051 can operate on one buffer

while another is being transferred over USB.

When an endpoint is paired, the 8051 should access only the even numbered endpoint of
the pair. The 8051 should not use the IRQ, IEN, VALID bits or the buffer associated
with the odd numbered endpoint.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 198

INO7VAL Endpoints 0-7 IN Valid Bits 7FDE
b7 b6 b5 b4 b3 b2 bl b0
IN7VAL | INBVAL | INSVAL | IN4AVAL | IN3SVAL | IN2VAL | INIVAL 1
R/W R/W R/W R/W R/W R/W R/W R/W
0 1 0 1 0 1 1 1
OUTO7VAL Endpoints 0-7 OUT Valid Bits 7FDF
b7 b6 b5 b4 b3 b2 bl b0
OUT7VAL | OUT6VAL | OUTSVAL | OUT4VAL | OUT3VAL | OUT2VAL | OUTIVAL 1
R/W R/W R/W R/W R/W R/W R/W R/W
0 1 0 1 0 1 0 1

The 8051 sets VAL=1 for any active endpoints, and VAL=0 for inactive endpoints.
These bits instruct the EZ-USB core to return a“no response’ if an invalid endpoint is
addressed, instead of a NAK.

The default values of these registers are set to support al endpoints that exist in the

default Anchor USB device (see Table 5-1 on page 52).

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 199

INISOVAL I sochronous IN Endpoint Valid Bits 7FEO
b7 b6 b5 b4 b3 b2 bl b0
INISVAL | INI4VAL | IN13VAL | IN12VAL | INIIVAL | INIOVAL | IN9VAL | IN8VAL
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 1 1
OUTISOVAL I sochronous OUT Endpoint Valid Bits 7FE1
b7 b6 b5 b4 b3 b2 bl b0
OUTI15VAL | OUT14VAL | OUT13VAL | OUT12VAL | OUT11VAL | OUT10VAL OUT9VAL OUT8VAL
R/W R/W R/W R/W R/W R/W R/W R/W
0 0 0 0 0 1 1 1

The 8051 sets VAL =1 for active endpoints, and VAL=0 for inactive endpoints. These
bits instruct the EZ-USB core to return “no response” if an invalid endpoint is accessed.

The default values of these registers are set to support al endpoints that exist in the

default Anchor USB device (see Table 5-1 on page 52).

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 200

12.14Fast Transfers

FASTXFR Fast Transfer Control TFE2
b7 b6 b5 b4 b3 b2 bl b0
FISO FBLK RPOL RMOD1 RMODO WPOL WMOD1 | WMODO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

The EZ-USB core provides a fast transfer mode that improves the 8051 transfer speed
between external logic and the isochronous and bulk endpoint buffers. The FASTXFR
register enables the modes for bulk and/or isochronous transfers, and selects the timing
waveforms for the FRD# and FWR# signals.

Bit 7: FISO Enable Fast ISO Transfers

The 8051 sets FISO=1 to enable fast isochronous transfers for all sixteen isochronous
endpoint FIFOS. When FISO=0 fast transfers are disabled for all sixteen isochronous
endpoints.
Bit 6: FBLK Enable Fast BULK Transfers

The 8051 sets FBLK =1 to enable fast bulk transfers using the Autopointer (next section)
with BULK endpoints. When FBLK=0 fast transfers are disabled for BULK endpoints.
Bit 5: RPOL FRD# Pulse Polarity

The 8051 sets RPOL =0 for active-low FRD# pulses, and RPOL=1 for active high FRD#
pul ses.

Bit 4-3: RMOD FRD# Pulse Mode

These bits select the phasing and width of the FRD# pulse. See Figure 8-11 on page 130.
Bit 2. WPOL FWR# Pulse Polarity

The 8051 sets WPOL =0 for active-low FWR# pulses, and WPOL=1 for active high
FWR# pul ses.
Bit 1-0: WMOD FWR# Pulse Mode

These bits select the phasing and width of the FWR# pulse. See Figure 8-12 on page
131.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 201

AUTOPTRH Auto Pointer AddressHigh 7TFE3
b7 b6 b5 b4 b3 b2 bl b0
A1l5 Al4 A13 AlL2 All A10 A9 A8
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTOPTRL Auto Pointer Address L ow 7TFE4
b7 b6 b5 b4 b3 b2 bl b0
A7 A6 A5 Ad A3 A2 Al A0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
AUTODATA Auto Pointer Data TFES
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

These registers implement the EZ-USB Autopointer.

AUTOPTRH/L

The 8051 loads a 16-bit address into the AUTOPTRH/L registers. Subsequent reads or
writes to the AUTODATA register increment the 16-bit value in these registers. The
loaded address must be in internal EZ-USB RAM. The 8051 can read these registersto
determine the address of the next byte to be accessed viathe AUTODATA register.

AUTODATA

8051 dataread or written to the AUTODATA register accesses the memory addressed by

the AUTOPTRHI/L registers, and increments the address after the read or write.

These registers allow FIFO access to the bulk endpoint buffers, as well as being useful
for internal data movement. Chapter 6, “EZ-USB Bulk Transfers’ and Chapter 8, “EZ-
USB Isochronous Transfers’ explain how to use the Autopointer for fast transfers to and
from the EZ-USB endpoint buffers.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 202

12.15SETUP Data

SETUPBUF SETUP Data Buffer (8 bytes) TFE8-TFEF
b7 b6 b5 b4 b3 b2 bl b0
D7 D6 D5 D4 D3 D2 D1 DO
RIW RIW RIW RIW RIW RIW RIW RIW
X X X X X X X X

This buffer contains the 8 bytes of SETUP packet data from the most recently received

CONTROL transfer.

The datain SETUPBUF is valid when the SUDAVIR (Setup Data Available Interrupt
Request) bit is set. The 8051 responds to the SUDAYV interrupt by reading the SETUP

bytes from this buffer.

EZ-USB TRM YV 1.51

Chapter 12. EZ-USB Registers

Page 203

12.161sochronous FIFO Sizes

OUTnADDR SO OUT Endpoint Start Address TFFO-7TFF7*
b7 b6 b5 b4 b3 b2 bl b0
A9 A8 A7 A6 A5 A4 0 0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X
INNADDR SO IN Endpoint Start Address TFF8-7TFFF*
b7 b6 b5 b4 b3 b2 bl b0
A9 A8 A7 A6 A5 A4 0 0
R/W R/W R/W R/W R/W R/W R/W R/W
X X X X X X X X

*See Table 12-6 for individual start address register addresses

Table 12-6. Isochronous FIFO Sart Addressregisters

Address | Endpoint Start Address

7FFO Endpoint 8 OUT Start Address
7FF1 Endpoint 9 OUT Start Address
TFF2 Endpoint 10 OUT Start Address
7FF3 Endpoint 11 OUT Start Address
TFF4 Endpoint 12 OUT Start Address
7FF5 Endpoint 13 OUT Start Address
7FF6 Endpoint 14 OUT Start Address
TFF7 Endpoint 15 OUT Start Address
7FF8 Endpoint 8 IN Start Address
7FF9 Endpoint 9 IN Start Address
7TFFA Endpoint 10 IN Start Address
7FFB Endpoint 11 IN Start Address
7FFC Endpoint 12 IN Start Address
7FFD Endpoint 13 IN Start Address
7FFE Endpoint 14 IN Start Address
7FFF Endpoint 15 IN Start Address

EZ-USB Isochronous endpoints use a pool of 1024 double-buffered FIFO bytes. The
1024 FIFO bytes can be divided between any or all of the isochronous endpoints. The
8051 sets isochronous endpoint FIFO sizes by writing starting addresses to these
registers, starting with address 0. Address bits A3-A0 are internally set to zero, so the
minimum FIFO size is 16 bytes.

See Chapter 8, “EZ-USB Isochronous Endpoints’, Section 8-8 for details about how to
set these registers.

EZ-USB TRM V 1.51 Chapter 12. EZ-USB Registers Page 204

13 EZ-USB AC/DC Parameters

13.1 ELECTRICAL CHARACTERISTICS

13.1.1 ABSOLUTE MAXIMUM RATINGS

Storage Temperature.coii i
Ambient TemperatureUnder Bias.
Supply Voltage to Ground Potential
DClInput Voltageto Any Pin.........................

13.1.2 OPERATING CONDITIONS

Ta(Ambient TemperatureUnder Bias)
Supply Voltage.
GroundVoltage.o
Fosc (Oscillator or Crystal Frequency).

13.1.3 DC CHARACTERISTICS

-65°Cto+150 °C
-40°Cto+85°C
-0.5Vto+4.0V
-05Vto+5.8V

0°Cto+70°C
+3.0Vto+3.6V

Symbol | Parameter Condition Min Max | Unit | Notes
Ve Supply Voltage 3.0 3.6 \
Vi Input High Voltage 2 5.25 V
Vi Input Low Voltage -5 8 V
I Input Leakage Current | 0< VN < Vcc + 10 UA
Von Output Voltage High lout = 1.6 ma 2.4 \
VoL Output Low Voltage lour =-1.6 ma 8 \
Cin Input Pin Capacitance 10 pF
| susp Suspend Current 275 UA
lcc Supply Current 8051 running, 50 mA
connected to USB
EZ-USB TRM V 1.51 Chapter 13. EZ-USB AC/DC Parameters Page 205

13.1.4 ACELECTRICAL CHARACTERISTICS

Specified Conditions: Capacitive load on al pins = 30 pF

13.1.5 GENERAL MEMORY TIMING

Symbol | Parameter Min Typ M ax Unit Notes
tCL 1/CLK24 Frequency 41.66 ns
tAV Delay from Clock to Vaid 0 10 ns
Address
tCD Delay from CLK24 to CS# 2 15 ns
tOED Delay from CLK?24 to OE# 2 15 ns
tWD Delay from CLK24 to WR# 2 15 ns
tRD Delay from CLK?24 to RD# 2 15 ns
tPD Delay from CLK24 to PSEN# 2 15 ns
13.1.6 PROGRAM MEMORY READ
Symbol | Parameter Formula Min | Max | Unit | Notes
tAAl Address Access Time 3tCL-tAV- 103 ns
TDSU1
tAH1 Address Hold from CLK24 | tCL+1 42 ns
tDSU1 | Data Setup to CLK24 12 ns
tDH1 Data Hold from CLK?24 0 ns
13.1.7 DATA MEMORY READ
Symbol | Parameter Formula Min | Max | Unit | Notes
tAA2 Address Access Time 3tCL-tAV- 103 ns
TDSU1
tAH2 Address Hold from CLK24 | tCL+1 42 ns
tDSU2 | Data Setup to CLK24 12 ns
tDH2 Data Hold from CLK?24 0 ns
13.1.8 DATA MEMORY WRITE
Symbol | Parameter Formula Min | Max | Unit | Notes
tAH3 Address Hold from CLK24 | tCL+2 43 ns
tDZV CLK?24 to Data Valid 15 ns
tDVZ CLK?24 to High Impedance | tCL+16 57 ns

EZ-USB TRM V 1.51 Chapter 13. EZ-USB AC/DC Parameters Page 206

13.1.9 FAST DATA WRITE

Symbol | Parameter Conditions | Min | Max | Unit | Notes
tCDO | Clock to Data Output 3 15 ns
Delay
tCWO | Clock to FIFO Write 2 10 ns
Output Delay
tPFWD | Propagation Delay 1 ns
Difference from FIFO
Write to Data Out
13.1.10 FAST DATA READ
Symbol | Parameter Conditions | Min | Max | Unit | Notes
tCRO Clock to FIFO Read 2 10 ns
Output Delay
tDSU4 | Data Setup to Rising 12 ns
CLK24
tDH4 Data Hold to Rising 0 ns
CLK?24

EZ-USB TRM YV 1.51

Chapter 13. EZ-USB AC/DC Parameters

Page 207

4710L4P{
CLK24
Vo
A [15.09
4-tCD-pf “4-tCD-P
Cs#
4tOED M “4tOEDM
OE#
«tWD-» < tWD
WR#
4-tRD-» «4-tRD-»
RD#
“tPD-¥| <-tPD-¥
PSEN#
Figure 13-1. External memory timing
T
PSEN#
CS#
OE#
A[15.0] AL
[——DSU1l ——pd——DH1 —J
D [7.0]

EZ-USB TRM YV 1.51

Figure 13-2. Program memory read timing

Chapter 13. EZ-USB AC/DC Parameters

Page 208

CLK24

RD#

Cs#

OE#

A[15.0]

4+ tAH2

J

+———tDSU2———»

4+——tDH2——¥

D [7.0]

Figure 13-3. Data memory read timing

CLK24

Cs#

WR#

< — tAH3

A[15.0] /

« DZV___y)

tDV:

D[7.0]

EZ-USB TRM YV 1.51

Figure 13-4. Data memory write timing

Chapter 13. EZ-USB AC/DC Parameters Page 209

EZ-USB
Fast Transfer Block Diagram

EZ-USB
AN2131Q ASIC
CLK24 FIFO Clock
80 D [7:0] < P D [7:0]
PQFP
FWR# FIFO Write Stobe
FRD# FIFO Read Stobe

Figure 13-5. Fast transfer mode block diagram

EZ-USB TRM V 1.51 Chapter 13. EZ-USB AC/DC Parameters Page 210

CLK24

D[7..0]

FRD#[00]

CLK24

D[7..0]

FWR#[00]

FtDSU4 ol

tDH4

<tCROﬂ

IR

Input

Figure 13-6. Fast transfer read timing [mode 00]

etCDO%

etCDO%

Output

—»

tCWO

EZ-USB TRM YV 1.51

tCWO

Figure 13-7. Fast transfer write timing [mode 00]

Chapter 13. EZ-USB AC/DC Parameters

Page 211

CLK24

D[7..0]

FRD#[01]

CLK24

D[7..0]

FWR#[01]

EZ-USB TRM YV 1.51

FtDSU4»

IR

<tCROﬂ

tDH4
o

ktCDog’{

Input
Figure 13-8. Fast transfer read timing [mode 01]
<7'[CD04>
Output —
—> tCWOF— —P| tCWO |
‘_
tPFWD
Figure 13-9. Fast transfer write timing [mode 01]
Chapter 13. EZ-USB AC/DC Parameters Page 212

CLK24

D[7..0]

FRD#[10]

CLK24

D[7..0]

FWR#[10]

tDH4
%tDSU4+

<tCROﬂ

IR

Input

Figure 13-10. Fast transfer read timing [mode 10]

EZ-USB TRM YV 1.51

kt(:Do%

ktCDO%

Output

—» tCWO F—

IR

—» tCWO F—

Figure 13-11. Fast transfer write timing [mode 10]

Chapter 13. EZ-USB AC/DC Parameters

Page 213

CLK24

D[7..0]

FRD#[11]

CLK24

D[7..0]

FWR#[11]

tDH4
%tDSU4+

IR

ktCDOA’{

—p ICWO |¢——

Input
‘tCROﬁ
Figure 13-11. Fast transfer read timing [mode 11]
e
<7'(CD04’
Output —
—» tCWO
tPFWD
’ 4

EZ-USB TRM YV 1.51

Figure 13-12. Fast transfer write timing [mode 11]

Chapter 13. EZ-USB AC/DC Parameters

Page 214

14 EZ-USB Packaging

14.1 44-Pin PQFP Package

13.45

A

12.95
10.10

44

j

«——8.00 REF—¥

9.90

SiRELEEE

34

AAHHAHHAH A

11

NF}

@

ililslilililk

22

33

Figure 14-1. 44-Pin PQFP Package (top view)

See Lead Detail

2.35 MAX

0.45

e
0.30

/HH

Figure 14-2. 44-Pin PQFP Package (side view)

EZ-USB TRM V.1.51

Chapter 14. EZ-USB Packaging

Page 216

0.95
S (<o PR

0.65

/

1.60 TYP

>

Lead Detail: A(S=N/S)

Figure 14-3. 44-Pin PQFP Package (detail view)

EZ-USB TRM V.1.51 Chapter 14. EZ-USB Packaging Page 217

14.2 80-Pin PQFP Package

050 o 19.95
nanpmasRnsRaRRSRaAnAEE

65— o = 40
] ™ ==
| (] A e e

—— 0.80BSC.

18.10 14.05 = 30

17.70 13.95 — | 80 PQFP

&
= o E

it

i

T

LULHSRE LT RRLR M

1.00 Ref ——» F;
il
&

Figure 14-4. 80-Pin PQFP Package (top view)

See Lead Detall

v

3.04 MAX

4 0.42
0.32

Figure 14-5. 80-Pin PQFP Package (side view)

EZ-USB TRM V.1.51 Chapter 14. EZ-USB Packaging Page 218

8 Places
12° REF.

+«— 0°~10°

2.76
2.66
1

Base Plane *‘ l l
v —Y]
|
Seating Plane J 0.28 j T

0.18 1.00
0.80

— |[«<—0.25 Gage Plane

1.95+0.15
+——————————>

Detail "A"

Figure 14-6. 80-Pin PQFP Package (side view)

EZ-USB TRM V.1.51 Chapter 14. EZ-USB Packaging Page 219

EZ-USB TRM V 1.51 Chapter 14. EZ-USB Packaging Page 220

